AI Article Synopsis

  • Acute myeloid leukemia (AML) shows a wide range of 5-year disease-free survival rates, from less than 10% to over 70%, depending on patient groups.
  • The study investigates how genetic variations in certain drug pathway genes might influence disease-free survival in AML patients undergoing autologous stem cell transplantation.
  • A specific SNP in the ABCC3 gene and another in the GSTM1-GSTM5 locus were linked to significantly shorter disease-free survival times, highlighting the potential role of genetics in AML treatment outcomes.

Article Abstract

Acute myeloid leukemia (AML) is a clinically heterogeneous disease, with a 5-year disease-free survival (DFS) ranging from under 10% to over 70% for distinct groups of patients. At our institution, cytarabine, etoposide and busulfan are used in first or second remission patients treated with a two-step approach to autologous stem cell transplantation (ASCT). In this study, we tested the hypothesis that polymorphisms in the pharmacokinetic and pharmacodynamic pathway genes of these drugs are associated with DFS in AML patients. A total of 1659 variants in 42 genes were analyzed for their association with DFS using a Cox-proportional hazards model. One hundred and fifty-four genetically European patients were used for the primary analysis. An intronic single nucleotide polymorphism (SNP) in ABCC3 (rs4148405) was associated with a significantly shorter DFS (hazard ratios (HR)=3.2, P=5.6 × 10(-6)) in our primary cohort. In addition, a SNP in the GSTM1-GSTM5 locus, rs3754446, was significantly associated with a shorter DFS in all patients (HR=1.8, P=0.001 for 154 European ancestry; HR=1.7, P=0.028 for 125 non-European patients). Thus, for the first time, genetic variants in drug pathway genes are shown to be associated with DFS in AML patients treated with chemotherapy-based autologous ASCT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068832PMC
http://dx.doi.org/10.1038/jhg.2013.38DOI Listing

Publication Analysis

Top Keywords

pathway genes
12
drug pathway
8
disease-free survival
8
acute myeloid
8
myeloid leukemia
8
patients treated
8
associated dfs
8
dfs aml
8
aml patients
8
associated shorter
8

Similar Publications

The interaction of bacteria and harmonine in harlequin ladybird confers an interspecies competitive edge.

Proc Natl Acad Sci U S A

January 2025

Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

The harlequin ladybird, , is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown.

View Article and Find Full Text PDF

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.

View Article and Find Full Text PDF

This study enrolled 10 patients diagnosed with premalignant lesions and early-stage gastric cardia adenocarcinoma (GCA), confirmed through endoscopic examination. These patients were subjected to next-generation sequencing (NGS) using a customized 1123-gene panel to identify genetic alterations and signaling pathways. The results were compared to stage IIB to IV GCA samples from the cancer genome atlas (TCGA) and a cohort of Hong Kong patients.

View Article and Find Full Text PDF

Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!