Factor X (FX) is a vitamin K-dependent coagulation zymogen, which upon activation to factor Xa assembles into the prothrombinase complex to activate prothrombin to thrombin. FX can be activated by either factor VIIa-tissue factor or factor IXa-factor VIIIa in extrinsic and intrinsic pathways, respectively. In this study, we identified a bleeding patient with moderate FX deficiency who exhibits a clotting defect only in the intrinsic pathway. Exome sequencing revealed that the patient carries a novel homozygous missense mutation that results in substitution of Thr211 with Pro in the activation peptide of FX. Thr211 is the site of an O-linked glycosylation in the activation peptide of FX. We postulated that the lack of this post-translational modification specifically impacts the activation of FX by intrinsic Xase, thereby impairing thrombin generation in the subject. To test this hypothesis, we expressed both wild-type FX and FX containing this mutation in mammalian cells and following the purification of the zymogens to homogeneity characterized their properties in both purified and plasma-based assay systems. Analysis of the results suggests that Thr211 to Pro substitution renders the FX mutant a poor substrate for both physiological activators, however, at physiological concentration of the substrate, the clotting defect manifest itself only in the intrinsic pathway, thus explaining the bleeding phenotype for the patient carrying this mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700658PMC
http://dx.doi.org/10.1160/TH13-03-0184DOI Listing

Publication Analysis

Top Keywords

activation peptide
12
bleeding patient
8
clotting defect
8
intrinsic pathway
8
thr211 pro
8
factor
6
activation
5
missense thr211pro
4
mutation
4
thr211pro mutation
4

Similar Publications

Background: Enhanced biological phosphorus removal (EBPR) systems utilize phosphorus-accumulating organisms (PAOs) to remove phosphorus from wastewater since excessive phosphorus in water bodies can lead to eutrophication. This study aimed to characterize a newly isolated PAO strain for its potential application in EBPR systems and to screen for additional biotechnological potential. Here, sequencing allowed for genomic analysis, identifying the genes and molecules involved, and exploring other potentials.

View Article and Find Full Text PDF

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

The PKM2/HIF-1α Axis is Involved in the Pathogenesis of Endometriosis via TGF-β1 under Endometrial Polyps.

Front Biosci (Landmark Ed)

December 2024

Department of Reproductive Medicine, Dongying People's Hospital, 257091 Dongying, Shandong, China.

Background: Endometriosis patients exhibit a cancer-like glycolytic phenotype. The pyruvate kinase M2 (PKM2)/hypoxia-inducible factor-1 alpha (HIF-1α) axis plays important roles in glycolysis-related diseases, but its role in patients with endometrial polyps (EPs) combined with endometriosis has not been validated.

Methods: EP samples were collected from patients with and without endometriosis.

View Article and Find Full Text PDF

VPO1 Promotes Programmed Necrosis of Cardiomyocytes in Rats with Chronic Heart Failure by Upregulating CYLD.

Front Biosci (Landmark Ed)

December 2024

Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.

Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.

View Article and Find Full Text PDF

Chemically Induced Dimerization via Nanobody Binding Facilitates in Situ Ligand Assembly and On-Demand GPCR Activation.

JACS Au

December 2024

Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.

Methods that enable the on-demand synthesis of biologically active molecules offer the potential for a high degree of control over the timing and context of target activation; however, such approaches often require extensive engineering to implement. Tools to restrict the localization of assembly also remain limited. Here we present a new approach for stimulus-induced ligand assembly that helps to address these challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!