Aim: The R577X polymorphism of the alpha-actinin-3 (ACTN3) gene and the IVS1-6G>A polymorphism of the ciliary neurotrophic factor (CNTF) gene have been associated with a favourable muscle phenotype (more muscle fibres with high glycolytic activity), reduced predisposition for congenital dystrophy and resistance to sarcopenia in old age. The aim of this study was to look for evidence of selective pressure towards genotypes favourable for strong muscle activity in a sample of national-level Italian athletes.

Methods: We analysed two stop codon polymorphisms in the DNA of 50 Italian athletes, specialised in power or endurance sports, and compared their genotypic distribution with those of a population of 50 controls. In a representative sub-group of athletes (N.=42) we then compared the genetic data with anaerobic threshold, assessed by an incremental exercise test up to exhaustion.

Results: The athlete group showed an allelic distribution of ACTN3 (R/R:64%, R/X:16%, X/X:20%) and CNTF (G/G:72%, G/A:26%, A/A:2%), significantly imbalanced towards alleles R/R and G/G, respectively, compared to controls (ACTN3=R/R:40% R/X:22% X/X:38% and CNTF=G/G:52%, G/A:24%, A/A:24%) (p=0.0024 and p=0.0001, respectively). Only the ACTN3 577X/X polymorphism showed a significant association with the anaerobic threshold of athletes (F-ratio= 4.037; p=0.025). Factorial ANOVA demonstrated a non significant interaction between favourable allelic patterns of ACTN3 and CNTF genes on aerobic performance in the athlete group.

Conclusion: The relationship found between favourable muscle phenotype and this genetic profile may have interesting implications in sport performance and training, athlete selection and different clinical activities, such as physical rehabilitation and modifying phenotypes associated with neuromuscular diseases.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ciliary neurotrophic
8
neurotrophic factor
8
national-level italian
8
italian athletes
8
favourable muscle
8
muscle phenotype
8
anaerobic threshold
8
polymorphisms alpha-actinin-3
4
alpha-actinin-3 ciliary
4
factor national-level
4

Similar Publications

Research on serotonin reveals a lack of consensus regarding its role in brain volume, especially concerning biomarkers linked to neurogenesis and neuroplasticity, such as ciliary neurotrophic factor (CNTF), fibroblast growth factor 4 (FGF-4), bone morphogenetic protein 6 (BMP-6), and matrix metalloproteinase-1 (MMP-1) in Alzheimer's disease (AD). This study aimed to investigate the influence of serotonin on brain structure and hippocampal volumes in relation to cognitive functions in AD, as well as its link with biomarkers like CNTF, FGF-4, BMP-6, and MMP-1. Data from 133 ADNI participants with AD included cognitive assessments (CDR-SB), serotonin measurements (Biocrates AbsoluteIDQ p180 kit, UPLC-MS/MS), and neurotrophic factors quantified via multiplex proteomics.

View Article and Find Full Text PDF

Marcks overexpression in retinal ganglion cells promotes optic nerve regeneration.

Cell Death Dis

December 2024

Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Regeneration of injured central nervous system (CNS) axons is highly restricted, leading to permanent neurological deficits. The myristoylated alanine-rich C-kinase substrate (MARCKS) is a membrane-associated protein kinase C (PKC) substrate ubiquitously expressed in eukaryotic cells, plays critical roles in development, brain plasticity, and tissues regeneration. However, little is known about the role of Marcks in CNS axon regeneration.

View Article and Find Full Text PDF

The ability to deliver protein therapeutics in a minimally invasive, safe, and sustained manner, without resorting to viral delivery systems, will be crucial for treating a wide range of chronic injuries and diseases. Among these challenges, achieving axon regeneration and functional recovery post-injury or disease in the central nervous system remains elusive to most clinical interventions, constantly calling for innovative solutions. Here, a thermally responsive hydrogel system utilizing recombinant spider silk protein (spidroin) is developed.

View Article and Find Full Text PDF

It has recently become clear that the gut microbiota influence intestinal motility, intestinal barrier function, and mucosal immune function; therefore, the gut microbiota are deeply involved in the maintenance of intestinal homeostasis. The effects of the gut microbiota on the enteric nervous system (ENS) in the adult intestine, however, remain poorly understood. In the current study, we investigated the effects of the gut microbiota on the ENS.

View Article and Find Full Text PDF

Traumatic optic neuropathies cause the death of retinal ganglion cells (RGCs) and axon degeneration. This is a result of the blockage of neurotrophic factor (NTF) supply from the brain and a vicious cycle of neurotoxicity, possibly mediated by increased levels of retinal Zn . Ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) are two NTFs that are known to support RGC survival and promote axon regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!