The uremic syndrome is characterized by the retention of various solutes that would normally be excreted by the kidneys. The substances that interact negatively with biologic functions are called uremic toxins. Over the past five decades, the membranes used for the treatment of chronic kidney disease have continuously evolved. The exposure of blood to any extracorporeal artificial surface results in the activation of several pathways within the body, including those involving coagulation and complement activation. One of the by-products of this generalized activation process is protein adsorption to the membrane surface, another phenomenon which can have a significant impact on solute removal. In fact, an array of studies showed that with increasing size of middle-sized proteins and other compounds, relatively more clearance is achieved by membrane adsorption compared with loss into the dialysate. A high adsorptive capacity, one of the main features of polymethylmethacrylate (PMMA) membranes, is very helpful and may both increase the total amount of solutes removed and remove different kinds of solutes. In this setting, a few studies have shown a variety of efficient clinical implications for adsorption hemodialysis, such as uremic pruritus, anemia, carpal tunnel syndrome and renal amyloidosis, immune dysfunction and improved response to vaccination. In addition, nutrition and survival were also improved using PMMA membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000350847 | DOI Listing |
J Orthop Traumatol
January 2025
Unità Operativa di Ortopedia e Traumatologia, APSS Trento, Largo Medaglie d'oro, 9, 38121, Trento, Italy.
Background: The Masquelet induced membrane technique is a surgical procedure that allows the reconstruction of segmental bone defects using a relatively simple approach that requires minimal resources from both the healthcare facility and the patient. Historically applied to the lower limb, this technique is gaining increasing attention in the literature for its use in the upper limb.
Methods: A systematic review of the literature was conducted using the PubMed and Google Scholar databases to identify all studies reporting the outcomes of the Masquelet induced membrane technique in the long bones of the upper limb (humerus, radius, and ulna) with a sample size of at least 3 patients.
Sensors (Basel)
December 2024
Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan.
Ethanol (EtOH) gas detection has garnered considerable attention owing to its wide range of applications in industries such as food, pharmaceuticals, medical diagnostics, and fuel management. The development of highly sensitive EtOH-gas sensors has become a focus of research. This study proposes an optical interferometric surface stress sensor for detecting EtOH gas.
View Article and Find Full Text PDFWater Res
December 2024
Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea; NanoRaman Analysis Corp., 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. Electronic address:
Nanoplastics (NPs) are growing concerns for health and the environment, being widely distributed across marine, freshwater, air, and biological systems. Analyzing NPs in real environmental samples requires pretreatment, which has traditionally been complex and often leads to underestimation in actual samples, creating a gap between real-world conditions and research findings. In this study, we propose using anodic aluminum oxide (AAO) membrane as a direct Raman substrate for particles on a filter, achieving complete recovery during separation and concentration while simplifying the pretreatment stages.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
ETH Zürich, Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, 8093, Zürich, Switzerland.
Coating synthetic nanoparticles (NPs) with lipid membranes is a promising approach to enhance the performance of nanomaterials in various biological applications, including therapeutic delivery to target organs. Current methods for achieving this coating often rely on bulk approaches which can result in low efficiency and poor reproducibility. Continuous processes coupled with quality control represent an attractive strategy to manufacture products with consistent attributes and high yields.
View Article and Find Full Text PDFChemistry
December 2024
National Key Laboratory of Green Pesticide, College of Chemistry, Central China, Normal University, Wuhan, 430079, P. R. China.
The detrimental effects of heavy metal aqueous pollution are attracting people's attention increasingly. Membrane separation technology plays a pivotal role in the treatment of aqueous pollution due to its low energy consumption and excellent separation effect. Inspired by the strong adhesion of heavy metal ions by the dopamine in mussel protein, we have fabricated the 5 %, 10 %, 20 % and 30 % proportion of polydopamine (PDA)/Polymethyl methacrylate (PMMA) blend membranes with dopamine structure by solvent-induced phase conversion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!