A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photoinduced electron transfer at a Si(111) nanostructured surface: effect of varying light wavelength, temperature, and structural parameters. | LitMetric

Photoinduced electron transfer at a Si(111) nanostructured surface: effect of varying light wavelength, temperature, and structural parameters.

J Chem Phys

Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611-8435, USA.

Published: May 2013

We treat electronic dynamics at surfaces of nanostructured semiconductors induced by absorption of visible light using reduced density matrices and properties obtained from ab initio electronic structure calculations, to focus on two non-adiabatic phenomena: (a) how active electrons interacting non-adiabatically with atoms at the surface undergo electronic transitions and (b) how active electrons interacting by exchanging energy with excitons in the medium undergo a dissipative non-adiabatic dynamics. We test the effects on charge separation from varying oscillator strengths, non-adiabatic momentum couplings, the rates of relaxation of excited states coupled to the medium, temperature, and light wavelength. Varying the oscillator strength displays the interplay between competing relaxation and charge transfer dynamics. Varying the non-adiabatic momentum coupling between excited and final states demonstrates the importance of including enough vibrational levels to model the full dynamics of the system and further shows the interplay of relaxation and charge transfer from the final state to the excited state. Larger electron transfer probabilities and longer lasting charge separation occur when oscillator strength into the intermediate state decreases, or when it increases into the final state, and when temperature increases. Longer lasting charge separation also occurs when the non-adiabatic momentum coupling decreases, a somewhat unexpected result which is due to the combined effect of population relaxation and transitions among many vibronic states.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4803482DOI Listing

Publication Analysis

Top Keywords

charge separation
12
non-adiabatic momentum
12
electron transfer
8
light wavelength
8
active electrons
8
electrons interacting
8
varying oscillator
8
oscillator strength
8
relaxation charge
8
charge transfer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!