A cryptic targeting signal creates a mitochondrial FEN1 isoform with tailed R-Loop binding properties.

PLoS One

MRC-Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge, United Kingdom.

Published: December 2013

A growing number of DNA transacting proteins is found in the nucleus and in mitochondria, including the DNA repair and replication protein Flap endonuclease 1, FEN1. Here we show a truncated FEN1 isoform is generated by alternative translation initiation, exposing a mitochondrial targeting signal. The shortened form of FEN1, which we term FENMIT, localizes to mitochondria, based on import into isolated organelles, immunocytochemistry and subcellular fractionation. In vitro FENMIT binds to flap structures containing a 5' RNA flap, and prefers such substrates to single-stranded RNA. FENMIT can also bind to R-loops, and to a lesser extent to D-loops. Exposing human cells to ethidium bromide results in the generation of RNA/DNA hybrids near the origin of mitochondrial DNA replication. FENMIT is recruited to the DNA under these conditions, and is released by RNase treatment. Moreover, high levels of recombinant FENMIT expression inhibit mtDNA replication, following ethidium bromide treatment. These findings suggest FENMIT interacts with RNA/DNA hybrids in mitochondrial DNA, such as those found at the origin of replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652857PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062340PLOS

Publication Analysis

Top Keywords

targeting signal
8
fen1 isoform
8
ethidium bromide
8
rna/dna hybrids
8
mitochondrial dna
8
fenmit
6
dna
5
cryptic targeting
4
signal creates
4
mitochondrial
4

Similar Publications

Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.

View Article and Find Full Text PDF

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis.

View Article and Find Full Text PDF

A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.

View Article and Find Full Text PDF

Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease's development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!