The role of regenerative periodontal therapy is the reconstitution of lost periodontal structures, ie, new formation of root cementum, periodontal ligament, and alveolar bone. The outcome of basic research has pointed to the important role of enamel matrix protein derivative (EMD) in periodontal wound healing. Histologic results from animal and human studies have shown that treatment with EMD promotes periodontal regeneration. Moreover, clinical studies have indicated that treatment with EMD positively influences periodontal wound healing in humans. The goal of this paper is to review the existing literature on EMD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3652362 | PMC |
http://dx.doi.org/10.2147/CCIDEN.S25347 | DOI Listing |
JBMR Plus
February 2025
Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States.
Hypophosphatasia (HPP) is an inherited error in metabolism resulting from loss-of-function variants in the gene, which encodes tissue-nonspecific alkaline phosphatase (TNAP). TNAP plays a crucial role in biomineralization of bones and teeth, in part by reducing levels of inorganic pyrophosphate (PP), an inhibitor of biomineralization. HPP onset in childhood contributes to rickets, including growth plate defects and impaired growth.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland.
Molar incisor hypomineralization (MIH) is a developmental defect that affects the enamel tissue of permanent teeth. Clinicians may observe a range of opacities in the affected teeth, varying from white to creamy, yellow, and brown. Of particular interest is an etiology of MIH that has not been rigorously elucidated.
View Article and Find Full Text PDFDev Dyn
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Background: Endocytosis of enamel matrix proteins (EMPs) by ameloblasts is a key process in the mineralization of enamel during the maturation stage of amelogenesis. However, the relevant receptor mediating endocytosis of EMPs is still unclear. The aim of this study was to explore potential endocytic receptors involved in this process.
View Article and Find Full Text PDFClin Adv Periodontics
January 2025
Private Practice, Florence, Italy.
Background: The periosteum consists of an outer fibrous layer and an inner cellular layer, where bone cells reside. Hence, it has been suggested that applying periosteum to a periodontal defect may help new bone formation. The purpose of this case study is to present the clinical and radiographic outcomes of a vestibular regenerative approach and the application of a connective tissue graft (CTG) with periosteum to improve the periodontal prognosis of a pathologically migrated hopeless tooth with an endo-periodontal lesion (EPL).
View Article and Find Full Text PDFClin Adv Periodontics
January 2025
Department of Periodontology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
Background: Various surgical techniques have recently been developed for periodontal tissue regeneration, especially those do not involve any incisions in the interdental papillae at the regeneration site. These techniques have significant advantages for obtaining clinical attachment gain with least amount of gingival recession, however, may also have disadvantages such as limited field of surgical view, difficulty in debridement, and limited access only from the buccal side. This case report addresses a 2-year follow-up with a novel surgical approach to achieve periodontal regeneration that overcomes these limitations: the flexible tunnel technique (FTT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!