Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
l1-minimization refers to finding the minimum l1-norm solution to an underdetermined linear system [Formula: see text]. Under certain conditions as described in compressive sensing theory, the minimum l1-norm solution is also the sparsest solution. In this paper, we study the speed and scalability of its algorithms. In particular, we focus on the numerical implementation of a sparsity-based classification framework in robust face recognition, where sparse representation is sought to recover human identities from high-dimensional facial images that may be corrupted by illumination, facial disguise, and pose variation. Although the underlying numerical problem is a linear program, traditional algorithms are known to suffer poor scalability for large-scale applications. We investigate a new solution based on a classical convex optimization framework, known as augmented Lagrangian methods. We conduct extensive experiments to validate and compare its performance against several popular l1-minimization solvers, including interior-point method, Homotopy, FISTA, SESOP-PCD, approximate message passing, and TFOCS. To aid peer evaluation, the code for all the algorithms has been made publicly available.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2013.2262292 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!