Introduction: The effects of anesthesia are infrequently considered when interpreting pediatric perfusion magnetic resonance imaging (MRI). The objectives of this study were to test for measurable differences in MR measures of cerebral blood flow (CBF) and cerebral blood volume (CBV) between non-sedated and propofol-sedated children, and to identify influential factors.

Methods: Supratentorial cortical CBF and CBV measured by dynamic susceptibility contrast perfusion MRI in 37 children (1.8-18 years) treated for infratentorial brain tumors receiving propofol (IV, n = 19) or no sedation (NS, n = 18) were compared between groups and correlated with age, hematocrit (Hct), end-tidal CO₂ (ETCO₂), dose, weight, and history of radiation therapy (RT). The model most predictive of CBF and CBV was identified by multiple linear regression.

Results: Anterior cerebral artery (ACA) and middle cerebral artery (MCA) territory CBF were significantly lower, and MCA territory CBV greater (p = 0.03), in IV than NS patients (p = 0.01, 0.04). The usual trend of decreasing CBF with age was reversed with propofol in ACA and MCA territories (r = 0.53, r = 0.47; p < 0.05). ACA and MCA CBF (r = 0.59, 0.49; p < 0.05) and CBV in ACA, MCA, and posterior cerebral artery territories (r = 0.73, 0.80, 0.52; p < 0.05) increased with weight in propofol-sedated children, with no significant additional influence from age, ETCO₂, hematocrit, or RT.

Conclusion: In propofol-sedated children, usual age-related decreases in CBF were reversed, and increases in CBF and CBV were weight-dependent, not previously described. Weight-dependent increases in propofol clearance may diminish suppression of CBF and CBV. Prospective study is required to establish anesthetic-specific models of CBF and CBV in children.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720819PMC
http://dx.doi.org/10.1007/s00234-013-1187-0DOI Listing

Publication Analysis

Top Keywords

cbf cbv
20
propofol-sedated children
12
cerebral artery
12
aca mca
12
cbf
10
perfusion mri
8
mri children
8
cerebral blood
8
cbv
8
mca territory
8

Similar Publications

This study aimed to investigate the impact of selected analysis conditions on blood flow values and color maps in canine brain perfusion computed tomography (PCT) and to propose optimal analysis conditions. Dynamic computed tomography imaging was performed on six beagle dogs. Color maps were generated using a combination of analysis algorithms (box-modulation transfer function (Box-MTF) and singular value deconvolution plus (SVD+) methods), slice thicknesses (4.

View Article and Find Full Text PDF

A Novel Self-Supervised Learning-Based Method for Dynamic CT Brain Perfusion Imaging.

J Imaging Inform Med

December 2024

Institute of Medical Device and Imaging, College of Medicine, Zhongzheng Dist, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei City, 100, Taiwan.

Dynamic computed tomography (CT)-based brain perfusion imaging is a non-invasive technique that can provide quantitative measurements of cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT). However, due to high radiation dose, dynamic CT scan with a low tube voltage and current protocol is commonly used. Because of this reason, the increased noise degrades the quality and reliability of perfusion maps.

View Article and Find Full Text PDF

Background: To investigate the accuracy of quantitative blood oxygen level-dependent (qBOLD) magnetic resonance imaging (MRI) in identifying hypoxia within glioblastoma and explore dynamic changes in oxygenation status of glioblastoma with and without metformin administration.

Methods: Three healthy and seven C6-bearing rats underwent 7-T qBOLD MRI. Oxygen extraction fraction (OEF) and cerebral metabolism rate of O (CMRO) were calculated from qBOLD data.

View Article and Find Full Text PDF

Hyperperfusion and blood-brain barrier disruption beyond the diffusion-restricted infarct one day after successful mechanical thrombectomy.

AJNR Am J Neuroradiol

November 2024

From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany (M.A.M., A.P., M.A.Mö., S.H., M.B., A.H.), Division of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Switzerland (M.A.M.), Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany (S.M.), Department of Neuroradiology, Würzburg University Hospital, Würzburg, Germany (M.P.), and University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland (A.H.).

Background And Purpose: Patterns of the cerebral microcirculatory response with changes in the blood brain barrier and perfusion in patients with stroke and a large vessel occlusion are still unclear. We combined dynamic contrast enhancement (DCE) permeability and DSC perfusion MRI to detect such patterns beyond the borders of the diffusion-restricted infarct core after successful recanalization.

Materials And Methods: Combined DCE permeability and DSC perfusion MRI were performed prospectively in patients within 24h after successful mechanical recanalization of acute middle cerebral artery occlusion.

View Article and Find Full Text PDF

In regional cerebrovascular monitoring, cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection, as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting. This study's aim is to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!