A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nano-micrometer-architectural acidic silica prepared from iron oxide of Leptothrix ochracea origin. | LitMetric

We prepared nano-micrometer-architectural acidic silica from a natural amorphous iron oxide with structural silicon which is a product of the iron-oxidizing bacterium Leptothrix ochracea. The starting material was heat-treated at 500 °C in a H2 gas flow leading to segregation of α-Fe crystalline particles and then dissolved in 1 M hydrochloric acid to remove the α-Fe particles, giving a gray-colored precipitate. It was determined to be amorphous silica containing some amount of iron (Si/Fe = ~60). The amorphous silica maintains the nano-microstructure of the starting material-~1-μm-diameter micrometer-tubules consisting of inner globular and outer fibrillar structures several tens of nanometer in size-and has many large pores which are most probably formed as a result of segregation of the α-Fe particles on the micrometer-tubule wall. The smallest particle size of the amorphous silica is ~10 nm, and it has a large surface area of 550 m(2)/g with micropores (0.7 nm). By using pyridine vapor as a probe molecule to evaluate the active sites in the amorphous silica, we found that it has relatively strong Brønsted and Lewis acidic centers that do not desorb pyridine, even upon evacuation at 400 °C. The acidity of this new silica material was confirmed through representative two catalytic reactions: ring-opening reaction and Friedel-Crafts-type reaction, both of which are known to require acid catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am401029rDOI Listing

Publication Analysis

Top Keywords

amorphous silica
16
nano-micrometer-architectural acidic
8
acidic silica
8
iron oxide
8
leptothrix ochracea
8
segregation α-fe
8
α-fe particles
8
silica
7
amorphous
5
silica prepared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!