Purpose: To determine the global metabolomic profile as measured in circulating plasma from surviving and non-surviving patients with community-acquired pneumonia (CAP) and sepsis.
Methods: Random, outcome-stratified case-control sample from a prospective study of 1,895 patients hospitalized with CAP and sepsis. Cases (n = 15) were adults who died before 90 days, and controls (n = 15) were adults who survived, matched on demographics, infection type, and procalcitonin. We determined the global metabolomic profile in the first emergency department blood sample using non-targeted mass-spectrometry. We derived metabolite-based prognostic models for 90-day mortality. We determined if metabolites stimulated cytokine production by differentiated Thp1 monocytes in vitro, and validated metabolite profiles in mouse liver and kidney homogenates at 8 h in cecal ligation and puncture (CLP) sepsis.
Results: We identified 423 small molecules, of which the relative levels of 70 (17 %) were different between survivors and non-survivors (p ≤ 0.05). Broad differences were present in pathways of oxidative stress, bile acid metabolism, and stress response. Metabolite-based prognostic models for 90-day survival performed modestly (AUC = 0.67, 95 % CI 0.48, 0.81). Five nucleic acid metabolites were greater in non-survivors (p ≤ 0.05). Of these, pseudouridine increased monocyte expression of TNFα and IL1β versus control (p < 0.05). Pseudouridine was also increased in liver and kidney homogenates from CLP mice versus sham (p < 0.05 for both).
Conclusions: Although replication is required, we show the global metabolomic profile in plasma broadly differs between survivors and non-survivors of CAP and sepsis. Metabolite-based prognostic models had modest performance, though metabolites of oxidative stress may act as putative damage-associated molecular patterns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932707 | PMC |
http://dx.doi.org/10.1007/s00134-013-2935-7 | DOI Listing |
Front Mol Biosci
January 2025
Division of Maternal and Fetal Medicine, Fundación Para la Investigación Biomédica, La Paz University Hospital, Madrid, Spain.
Introduction: Gestational diabetes mellitus (GDM) is a global health concern with significant short and long-term complications for both mother and baby. Early prediction of GDM, particularly late-onset, is crucial for implementing timely interventions to mitigate adverse outcomes. In this study, we conducted a comprehensive metabolomic analysis to explore potential biomarkers for early GDM prediction.
View Article and Find Full Text PDFMol Cell Proteomics
January 2025
Department of Biology, Duke University, Durham, NC, 27708, USA. Electronic address:
Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote concerted response mechanisms remain understudied.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA.
The Epstein-Barr virus (EBV) infects nearly 90% of adults globally and is linked to over 200,000 annual cancer cases. Immunocompromised individuals from conditions such as primary immune disorders, HIV, or posttransplant immunosuppressive therapies are particularly vulnerable because of EBV's transformative capability. EBV remodels B cell metabolism to support energy, biosynthetic precursors, and redox equivalents necessary for transformation.
View Article and Find Full Text PDFCurr Alzheimer Res
January 2025
Student's Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition with rising prevalence due to the aging global population. Existing methods for diagnosing AD are struggling to detect the condition in its earliest and most treatable stages. One early indicator of AD is a substantial decrease in the brain's glucose metabolism.
View Article and Find Full Text PDFBackground: Chronic low back pain (LBP) is a significant global health concern, often linked to vertebral bone marrow lesions (BML), particularly fatty replacement (FR). This study aims to explore the relationship between the gut microbiome, serum metabolome, and FR in chronic LBP patients.
Methods: Serum metabolomic profiling and gut microbiome analysis were conducted in chronic LBP patients with and without FR (LBP + FR, = 40; LBP, = 40) and Healthy Controls (HC, = 31).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!