Regulating cell proliferation and differentiation in CNS development requires both extraordinary complexity and precision. Neural progenitors receive graded overlapping signals from midline signaling centers, yet each makes a unique cell fate decision in a spatiotemporally restricted pattern. The Nde1-Lis1 complex regulates individualized cell fate decisions based on the geographical location with respect to the midline. While cells distant from the midline fail to self-renew in the Nde1-Lis1 double-mutant CNS, cells embedded in the signaling centers showed marked overproliferation. A direct interaction between Lis1 and Brap, a mitogen-activated protein kinase (MAPK) signaling threshold modulator, mediates this differential response to mitogenic signal gradients. Nde1-Lis1 deficiency resulted in a spatially dependent alteration of MAPK scaffold Ksr and hyperactivation of MAPK. Epistasis analyses supported synergistic Brap and Lis1 functions. These results suggest that a molecular complex composed of Nde1, Lis1, and Brap regulates the dynamic MAPK signaling threshold in a spatially dependent fashion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718043PMC
http://dx.doi.org/10.1016/j.devcel.2013.04.006DOI Listing

Publication Analysis

Top Keywords

spatially dependent
12
dynamic mapk
8
signaling centers
8
cell fate
8
lis1 brap
8
mapk signaling
8
signaling threshold
8
mapk
5
dependent dynamic
4
mapk modulation
4

Similar Publications

Conductive metal-organic frameworks (MOFs) are crystalline, intrinsically porous materials that combine remarkable electrical conductivity with exceptional structural and chemical versatility. This rare combination makes these materials highly suitable for a wide range of energy-related applications. However, the electrical conductivity in MOF-based devices is often limited by the presence of different types of structural disorder.

View Article and Find Full Text PDF

Mapping the spatial atlas of the human bone tissue integrating spatial and single-cell transcriptomics.

Nucleic Acids Res

January 2025

Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.

Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.

View Article and Find Full Text PDF

Monte Carlo-based realistic simulation of optical coherence tomography angiography.

Biomed Opt Express

January 2025

Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Optical coherence tomography angiography (OCTA) offers unparalleled capabilities for non-invasive detection of vessels. However, the lack of accurate models for light-tissue interaction in OCTA jeopardizes the development of the techniques to further extract quantitative information from the measurements. In this manuscript, we propose a Monte Carlo (MC)-based simulation method to precisely describe the signal formation of OCTA based on the fundamental theory of light-tissue interactions.

View Article and Find Full Text PDF

Vector modes are well-defined field distributions with spatially varying polarization states, rendering them irreducible to the product of a single spatial mode and a single polarization state. Traditionally, the spatial degree of freedom of vector modes is constructed using two orthogonal modes from the same family. Here, we introduce a novel class of vector modes whose spatial degree of freedom is encoded by combining modes from both the Hermite- and Laguerre-Gaussian families, ensuring that the modes are shape-invariant upon propagation.

View Article and Find Full Text PDF

An intelligent controlled spatiotemporal mode-locked (STML) fiber laser based on a photonic lantern (PL) is proposed and experimentally demonstrated. A pair of in-house developed PLs is spliced into the cavity in a back-to-back structure. This PL-based structure functions as a mode multiplexer/demultiplexer to generate higher-order spatial modes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!