We have developed an efficient Brønsted acid-controlled strategy for the [3 + 2] coupling reaction of quinone monoacetals (QMAs) with nucleophilic alkenes, which is triggered by the particular use of a specific acid promoter, perfluorinated acid, and a solvent, fluoroalcohol. This new coupling reaction smoothly proceeded with high regiospecificity in regard with QMAs for introducing π-nucleophiles to only the carbon α to the carbonyl group, thereby providing diverse dihydrobenzofurans and derivatives with high yields, up to quantitative, under mild conditions in short reaction times. The choice of Brønsted acid enabled us to avoid hydrolysis of the QMAs, which gives quinones, and the formation of discrete cationic species from the QMAs. Notably, further investigations in this study with regard to the acid have led to the findings that the originally stoichiometrically used acid could be reduced to a catalytic amount of 5 mol % loading or less and that the stoichiometry of the alkenes could be significantly improved down to only 1.2 equiv. The facts that only a minimal loading (5 mol %) of perfluoroterephthalic acid is required, readily available substrates can be used, and the regioselectivity can be controlled by the acid used make this coupling reaction very fascinating from a practical viewpoint.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo400613z | DOI Listing |
Mikrochim Acta
January 2025
Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry & Chemical Engineering, School of Materials Science and Engineering and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Department of Chemistry and Center for Atomic Engineering of Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of the Ministry of Education, Anhui University, Hefei, 230601, China.
Atomically precise nanoclusters (NCs) can serve as an excellent platform for a comprehensive understanding of structure-property relationships. Herein, three structurally similar Cu NCs (Cu-1, Cu-2 and Cu-3) have been prepared for the photocatalytic phenylacetylene self-coupling reaction. It was found that Cu-1 NC achieved the highest turnover number (TON) of 524.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
As an indispensable member of the reticular material family, metal-carbon-based organometallic frameworks (OMFs) remain largely underexplored, and no chiral OMFs (COMFs) have been reported thus far. Herein, we first report the construction of COMFs from a Pd-isocyanide OMF via nucleophilic addition to the Pd-isocyanide moiety with optically pure amines. The obtained Pd-bis(acyclic diaminocarbene) (Pd-BADC)-derived chiral OMFs display excellent applicability and can be reusable chiral catalysts to highly promote asymmetric Strecker and Suzuki-Miyaura cross-coupling reactions in a heterogeneous way.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.
The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, 266000, China.
Hydrogels are flexible materials characterized by a 3D network structure, which possess high water content and adjustable physicochemical properties. They have found widespread applications in tissue engineering, electronic skin, drug delivery, flexible sensors, and photothermal therapy. However, hydrogel networks often exhibit swelling behavior in aqueous environments, which can result in structural degradation and a loss of gel performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!