Aim: If progressive liver injury and subsequent hepatic encephalopathy can be prohibited in fulminant liver failure (FLF), it would be ideal for intensive care of FLF and provide an expanded opportunity for liver transplantation (LT). We hypothesized that matrix metalloproteinase (MMP)-9 plays an important role in FLF progression, and investigated MMP-9 behaviors in a murine FLF model, especially at the coma stage.

Methods: The murine FLF model with azoxymethane recapitulates FLF in humans. The detailed coma status was evaluated, on the assumption that LT is indicated at early, but not late, stage 3. To investigate whether MMP-9 deletion or reduction has beneficial effects, an MMP-9 inhibitor (GM6001) and transfection of tissue inhibitor of metalloproteinases (TIMP)-1 cDNA were used. Mice were divided into five groups: control; FLF; FLF with GM6001 pretreatment; FLF with TIMP-1 plasmid transfection 24 h before disease onset; and FLF with TIMP-1 plasmid transfection 48 h before disease onset. Neurological findings, including survival, were followed. Samples were obtained at early and late stage 3. Biochemical examinations and histopathological assessments were performed. The expression and function of MMP-9 and TIMP-1 were evaluated by western blotting and zymography. A brain permeability study was also performed.

Results: MMP-9 was strongly increased in FLF. The MMP-9 inhibitions worked well, and prolonged the survival, interval to stage 3 and duration of early stage 3. MMP-9 inhibition improved the liver and subsequent brain injuries at early stage 3, with no remarkable improvements at late stage 3.

Conclusion: MMP-9 has therapeutic potential for FLF progression.

Download full-text PDF

Source
http://dx.doi.org/10.1111/hepr.12161DOI Listing

Publication Analysis

Top Keywords

flf
12
late stage
12
mmp-9
9
fulminant liver
8
liver failure
8
hepatic encephalopathy
8
flf progression
8
murine flf
8
flf model
8
early late
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!