A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

One-pot preparation and CO2 adsorption modeling of porous carbon, metal oxide, and hybrid beads. | LitMetric

One-pot preparation and CO2 adsorption modeling of porous carbon, metal oxide, and hybrid beads.

ACS Appl Mater Interfaces

Particulate Fluids Processing Centre, School of Chemistry, The University of Melbourne, Parkville VIC 3010, Australia.

Published: June 2013

Hierarchically porous carbon (C), metal oxide (ZrTi), or carbon-metal oxide (CZrTi) hybrid beads are synthesized in one pot through the in situ self-assembly of Pluronic F127, titanium and zirconium propoxides, and polyacrylonitrile (PAN). Upon contact with water, a precipitation of PAN from the liquid phase occurs concurrently with polymerization and phase separation of the inorganic precursors. The C, ZrTi, and CZrTi materials have similar morphologies but different surface chemistries. The adsorption of carbon dioxide by each material has been studied and modeled using the Langmuir-Freundlich equation, generating parameters that are used to calculate the surface affinity distributions. The Langmuir, Freundlich, Tóth, and Temkin models were also applied but gave inferior fits, indicating that the adsorption occurred on an inhomogeneous surface reaching a maximum capacity as available surface sites became saturated. The carbon beads have higher surface affinity for CO2 than the hybrid and metal oxide materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am4007929DOI Listing

Publication Analysis

Top Keywords

metal oxide
12
porous carbon
8
carbon metal
8
hybrid beads
8
surface affinity
8
surface
5
one-pot preparation
4
preparation co2
4
co2 adsorption
4
adsorption modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!