Protective Effects of Resveratrol on TNF-α-Induced Endothelial Cytotoxicity in Baboon Femoral Arterial Endothelial Cells.

J Diabetes Res

Department of Endocrinology, Qilu Hospital, Shandong University, 107 Wen Hua Xi Lu, Jinan, Shandong 250012, China ; Southwest National Primate Research Center, Texas Biomedical Research Institute, P.O. Box 760549, San Antonio, TX 78245-0549, USA.

Published: May 2013

Endothelial injury induced by inflammatory factors plays a critical role in the pathogenesis of cardiovascular disease. Endothelial cell (EC) apoptosis, proliferation, migration, and cellular adhesion molecule (CAM) expression contribute to the development of atherosclerosis. We investigated the effects of resveratrol (0.1-100  μ M) on the proliferation, migration, and CAM expression of primary cultures of baboon arterial endothelial cells (BAECs). In addition, we tested its effects under normal conditions as well as under inflammatory conditions induced by tumour necrosis factor-α (TNF-α) administered either by cotreatment, pretreatment, or posttreatment. Immunocytochemistry, MTT, wound-healing, and flow cytometry assays were performed. The resveratrol treatment significantly enhanced BAEC proliferation and attenuated TNF-α-induced impairment of proliferation at the optimal doses of 1-50 µM. Resveratrol at a high dose (100  μ M) and TNF-α impaired BAEC migration, while low doses of resveratrol (1-50  μ M) attenuated TNF-α-induced impairment of BAEC migration. Moreover, resveratrol inhibited TNF-α-induced ICAM-1 and VCAM-1 expression. Taken together, our results suggest that the resveratrol protects BAECs after inflammatory stimulation as well as ameliorates inflammatory effects at low concentrations. Consequently, resveratrol should be considered as a candidate drug for the prevention and treatment of inflammatory vascular diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647561PMC
http://dx.doi.org/10.1155/2013/185172DOI Listing

Publication Analysis

Top Keywords

resveratrol
8
effects resveratrol
8
arterial endothelial
8
endothelial cells
8
proliferation migration
8
cam expression
8
attenuated tnf-α-induced
8
tnf-α-induced impairment
8
baec migration
8
endothelial
5

Similar Publications

Resveratrol is a natural polyphenol (stilbenoid), which can be found in grape skin, red wine, blueberries, peanuts and others. The biological properties of resveratrol, in particular antioxidant, anti-inflammatory, anticancer, estrogenic, vasorelaxant and cardioprotective activity, are the main reason for its importance in medicine and pharmacy. Despite all of its advantages, however, there are many problems related to this polyphenolic substance, such as low stability, water insolubility, poor bioavailability and fast metabolism.

View Article and Find Full Text PDF

: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction.

View Article and Find Full Text PDF

The widespread use of light-emitting diodes (LEDs) has increased blue light (BL) exposure, raising concerns about its potential adverse effects on ocular health. Prolonged exposure to BL has been implicated in the pathogenesis of various retinal disorders, including age-related macular degeneration (AMD), primarily through mechanisms involving oxidative stress and inflammation mediated by the overproduction of reactive oxygen species (ROS). This review synthesizes current evidence on the photoprotective properties of dietary bioactive compounds, (e.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!