Both antigen recognition and CD28 costimulation are required for the activation of naïve αβ T cells and their subsequent differentiation into cytokine-producing or cytotoxic effectors. Notably, this two-signal paradigm holds true for all αβ T cell subsets, regardless of whether they acquire their effector function in the periphery or the thymus. Because of contradictory results, however, it remains unresolved as to whether CD28 costimulation is necessary for γδ T cell activation and differentiation. Given that γδ T cells have been recently shown to acquire their effector fates in the thymus, it is conceivable that the contradictory results may be explained, in part, by a differential requirement for CD28 costimulation in the development or differentiation of each γδ T cell effector subset. To test this, we examined the role of CD28 in γδ T cell effector fate determination and function. We report that, although IFNγ-producing γδ T (γδ-IFNγ) cells express higher levels of CD28 than IL-17-producing γδ T (γδ-17) cells, CD28-deficiency had no effect on the thymic development of either subset. Also, following Listeria infection, we found that the expansion and differentiation of γδ-17 and γδ-IFNγ effectors were comparable between CD28(+/+) and CD28(-/-) mice. To understand why CD28 costimulation is dispensable for γδ T cell activation and differentiation, we assessed glucose uptake and utilization by γδ T cells, as CD28 costimulation is known to promote glycolysis in αβ T cells. Importantly, we found that γδ T cells express higher surface levels of glucose transporters than αβ T cells and, when activated, exhibit effector functions over a broader range of glucose concentrations than activated αβ T cells. Together, these data not only demonstrate an enhanced glucose metabolism in γδ T cells but also provide an explanation for why γδ T cells are less dependent on CD28 costimulation than αβ T cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3650071 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063178 | PLOS |
Transplantation
January 2025
Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
Background: Long-term renal allograft acceptance has been achieved in macaques using a transient mixed hematopoetic chimerism protocol, but similar regimens have proven unsuccessful in heart allograft recipients unless a kidney transplant was performed simultaneously. Here, we test whether a modified protocol based on targeting CD154, CD2, and CD28 is sufficient to prolong heart allograft acceptance or promote the expansion of regulatory T cells.
Methods: Eight macaques underwent heterotopic allo-heart transplantation from major histocompatibility complex-mismatched donors.
Front Immunol
January 2025
Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
Introduction: T cell activation requires T cell receptor (TCR) engagement by its specific ligand. This interaction initiates a series of proximal events including tyrosine phosphorylation of the CD3 and TCRζ chains, recruitment, and activation of the protein tyrosine kinases Lck and ZAP70, followed by recruitment of adapter and signaling proteins. CD28 co-stimulation is also required to generate a functional immune response.
View Article and Find Full Text PDFTheranostics
January 2025
Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.
This study investigates a method for programming immune cells using a biomaterial-based system, providing an alternative to traditional cell manipulation techniques. It addresses the limitations of engineered adoptive T cell therapies, such as T cell exhaustion, by introducing a gelatin-hyaluronic acid (GH-GMA) hydrogel system. We characterized tonsil mesenchymal stem cells (TMSCs), lymphatic endothelial cells (T-LECs), stimulated T-CD8 T cells (STCs), and GH-GMA biomaterials.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
Light Chain Bioscience - Novimmune SA, Geneva, Switzerland.
Research (Wash D C)
January 2025
Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
Protein phosphatase 2A (PP2A) is one of the most abundant serine/threonine phosphatases and plays critical roles in regulating cell fate and function. We previously showed that PP2A regulates the differentiation of CD4 T cells and the development of thymocytes. Nevertheless, its role in CD8 T cells remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!