The mechanisms of insect odor transduction are still controversial. Insect odorant receptors (ORs) are 7TM receptors with inverted membrane topology. They colocalize with a conserved coreceptor (Orco) with chaperone and ion channel function. Some studies suggest that insects employ exclusively ionotropic odor transduction via OR-Orco heteromers. Other studies provide evidence for different metabotropic odor transduction cascades, which employ second messenger-gated ion channel families for odor transduction. The hawkmoth Manduca sexta is an established model organism for studies of insect olfaction, also due to the availability of the hawkmoth-specific pheromone blend with its main component bombykal. Previous patch-clamp studies on primary cell cultures of M. sexta olfactory receptor neurons provided evidence for a pheromone-dependent activation of a phospholipase Cβ. Pheromone application elicited a sequence of one rapid, apparently IP3-dependent, transient and two slower Ca(2+)-dependent inward currents. It remains unknown whether additionally an ionotropic pheromone-transduction mechanism is employed. If indeed an OR-Orco ion channel complex underlies an ionotropic mechanism, then Orco agonist-dependent opening of the OR-Orco channel pore should add up to pheromone-dependent opening of the pore. Here, in tip-recordings from intact pheromone-sensitive sensilla, perfusion with the Orco agonist VUAA1 did not increase pheromone-responses within the first 1000 ms. However, VUAA1 increased spontaneous activity of olfactory receptor neurons Zeitgebertime- and dose-dependently. We conclude that we find no evidence for an Orco-dependent ionotropic pheromone transduction cascade in M. sexta. Instead, in M. sexta Orco appears to be a slower, second messenger-dependent pacemaker channel which affects kinetics and threshold of pheromone-detection via changes of intracellular Ca(2+) baseline concentrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3643954PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062648PLOS

Publication Analysis

Top Keywords

odor transduction
16
ion channel
12
ionotropic mechanism
8
manduca sexta
8
olfactory receptor
8
receptor neurons
8
ionotropic
5
sexta
5
transduction
5
channel
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!