Certain bacterial zinc-containing anti-sigma (ZAS) factors respond sensitively to thiol-induced oxidative stress by undergoing conformational changes, which in turn reduce binding affinities for their cognate sigma factors. This redox sensitivity provides a mechanism for coping with oxidative stress by activating the transcription of antioxidant genes. Not all ZAS proteins are redox-sensitive, but the mechanism of redox sensitivity is not fully understood. Here we propose that alternative zinc-binding sites determine redox sensitivity. To support this proposal, we performed protein modeling and zinc docking on redox-sensitive and redox-insensitive ZAS proteins complexed with their cognate sigma factors. At least one strong alternative zinc-binding pocket was detected for all known redox-sensitive ZAS factors in actinomycetes, while no strong alternative zinc-binding pocket was identified in redox-insensitive ZAS factors, except for one controversial case. This hypothesis of alternative zinc-binding sites can also explain residue-specific contributions to the redox sensitivity of RsrA, a redox-sensing ZAS protein from Streptomyces coelicolor, for which alanine mutagenesis experiments are available. Our results suggest a mechanistic model for redox sensitivity as follows: zinc ion can probabilistically occupy multiple sites in redox-sensitive ZAS proteins, increasing the susceptibility of zinc-coordinating cysteine residues to oxidation. This picture of probabilistic zinc occupation agrees with a previous structure and energy analysis on zinc finger proteins, and thus it may be more widely applicable to other classes of reactive zinc-binding proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.24323 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!