Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Natural photonic structures exhibit remarkable color effects such as metallic appearance and iridescence. A rigorous study of the electromagnetic response of such complex structures requires to accurately determine some of their relevant optical parameters, such as the refractive indices of the materials involved. In this paper, we apply different heuristic optimization strategies to retrieve the real and imaginary parts of the refractive index of the materials comprising natural multilayer systems. Through some examples, we compare the performances of the inversion methods proposed and show that these kinds of algorithms have a great potential as a tool to investigate natural photonic structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.52.002511 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!