We describe a microfluidic device with an integrated microwave heater specifically designed to dielectrically heat non-aqueous droplets using time-varying electrical fields with the frequency range between 700 and 900 MHz. The precise control of frequency, power, temperature and duration of the applied field opens up new vistas for experiments not attainable by conventional microwave heating. We use a non-contact temperature measurement system based on fluorescence to directly determine the temperature inside a single droplet. The maximum temperature achieved of the droplets is 50 °C in 15 ms which represents an increase of about 25 °C above the base temperature of the continuous phase. In addition we use an infrared camera to monitor the thermal characteristics of the device allowing us to ensure that heating is exclusively due to the dielectric heating and not due to other effects like non-dielectric losses due to electrode or contact imperfection. This is crucial for illustrating the potential of dielectric heating of benzyl alcohol droplets for the synthesis of metal oxides. We demonstrate the utility of this technology for metal oxide nanoparticle synthesis, achieving crystallization of tungsten oxide nanoparticles and remarkable microstructure, with a reaction time of 64 ms, a substantial improvement over conventional heating methods.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3nr00500cDOI Listing

Publication Analysis

Top Keywords

dielectric heating
12
non-aqueous droplets
8
microfluidic device
8
nanoparticle synthesis
8
heating
6
temperature
5
microwave dielectric
4
heating non-aqueous
4
droplets
4
droplets microfluidic
4

Similar Publications

Background: Capillary electrophoresis (CE) is a highly versatile separation technique widely used in analytical chemistry. Traditionally, CE can be categorized as either aqueous or non-aqueous systems based on the buffer solvents employed. For decades, non-aqueous CE has been predominantly associated with the use of organic solvents, a perception deeply ingrained in the scientific community.

View Article and Find Full Text PDF

Radio frequency heating assisted Maillard reaction of whey protein - gum Arabic: Improving structural and unlocking functional properties.

Int J Biol Macromol

December 2024

College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Biological Systems Engineering, Washington State University, 213 L.J. Smith Hall, Pullman, WA 99164-6120, USA; Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China. Electronic address:

Article Synopsis
  • Whey protein is a nutritious animal protein, but its usefulness in food systems is limited by its sensitivity to environmental factors.
  • The study explores using radio frequency heating to couple whey protein with gum Arabic, significantly improving their functional properties compared to traditional water bath heating.
  • Results showed that the RF heating increased the glycosylation degree, enhancing emulsifying, foaming, and antioxidant qualities of the protein-gum conjugates.
View Article and Find Full Text PDF

Zeolite coatings are studied as molecular sieves for membrane separation, membrane reactors, and chemical sensor applications. They are also studied as anticorrosive films for metals and alloys, antimicrobial and hydrophobic films for heating, ventilation, and air conditioning, and dielectrics for semiconductor applications. Zeolite coatings are synthesized by hydrothermal, ionothermal, and dry-gel conversion approaches, which require high process temperatures and lengthy times (ranging from hours to days).

View Article and Find Full Text PDF

Proton diffusion and hydrogen/deuterium exchange in amorphous solid water at temperatures from 114 to 134 K.

J Chem Phys

December 2024

Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

The reaction coefficient for hydrogen/deuterium (H/D) exchange and the diffusion of hydrated excess protons within amorphous solid water (ASW) are characterized as a function of temperature. For these experiments, water films are deposited on a Pt(111) substrate at 108 K, and reactions with pre-adsorbed hydrogen atoms produce hydrated protons. Upon heating, protons diffuse within the water, and H/D exchange occurs when they encounter D2O probe molecules deposited in the films.

View Article and Find Full Text PDF

Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model.

Beilstein J Nanotechnol

December 2024

Centro de Investigaciones en Dispositivos Semiconductores (CIDS-ICUAP), Benemérita Universidad Autónoma de Puebla (BUAP). Col. San Manuel, Cd. Universitaria, Av. San Claudio y 14 sur, Edif. IC5 y IC6. Puebla, Pue., 72507 México.

In this study, a simulation of the elementary chemical reactions during SiO film growth in a hot filament chemical vapor deposition (HFCVD) reactor was carried out using a 2D model. For the 2D simulation, the continuity, momentum, heat, and diffusion equations were solved numerically by the software COMSOL Multiphysics based on the finite element method. The model allowed for the simulation of the key parameters of the HFCVD reactor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!