Plasmodium spp. parasites, the causative agents of malaria, survive and replicate in human hosts by modulating host protective immune responses. In a rodent model, malaria manifests as a severe splenomegaly, with infiltration of cells and lympho-proliferation as major contributing factors of the immunopathology. However, the cellular contents and the functions of these cells have not been well studied. Here, we report that Plasmodium berghei infection of mice leads to massive recruitment of mesenchymal stem cells (MSCs) in secondary lymphoid organs. Infusion of these cells into naïve mice was able to confer host resistance against malaria. Furthermore, MSCs augmented interleukin (IL)-12 production but suppressed IL-10 production in recipient animals. In addition, we observed dramatic reductions of regulatory T (Treg) cells in animals that received MSCs. Taken together, our findings have identified recruitment of MSCs as a novel host protective mechanism adopted by the host to combat malaria by modulating Treg-cell responses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.201242882DOI Listing

Publication Analysis

Top Keywords

host protective
12
mesenchymal stem
8
stem cells
8
protective immune
8
immune responses
8
malaria modulating
8
cells
7
host
5
malaria
5
cells play
4

Similar Publications

Background: () is a widely prevalent intracellular parasite that infects almost all warm-blooded animals and causes serious public health problems. The drugs currently used to treat toxoplasmosis have the disadvantage of being toxic and prone to the development of resistance, and the only licensed vaccine entails a risk of virulence restoration. The development of a safe and effective vaccine against is urgently needed.

View Article and Find Full Text PDF

Biosafety and immunology: An interdisciplinary field for health priority.

Biosaf Health

October 2024

NHC Key Laboratory of Biosafety, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.

Biosafety hazards can trigger a host immune response after infection, invasion, or contact with the host. Whether infection with a microorganism results in disease or biosafety concerns depends to a large extent on the immune status of the population. Therefore, it is essential to investigate the immunological characteristics of the host and the mechanisms of biological threats and agents to protect the host more effectively.

View Article and Find Full Text PDF

Thymol (THY) is a phenolic monoterpene compound that has garnered attention due to its various biological properties, including antioxidant, anti-inflammatory, and immune-regulatory effects. The purpose of this study was to determine the therapeutic and protective effects of THY in colitic mice, with a particular focus on the mechanisms involving gut microbiota. The results showed that early intervention with THY (40 and 80 mg/kg) not only alleviated the clinical symptoms and colonic damage in mice with dextran sodium sulfate (DSS)-induced colitis but also suppressed the colonic production of inflammatory cytokines (IL-1β, IL-6, and IL-18) and enhanced the expression of mucins (MUC1 and MUC2) and trefoil factor family 3 (TFF3), thereby improving the integrity of the intestinal epithelial barrier.

View Article and Find Full Text PDF

The oral administration of probiotics is a promising strategy to regulate the host-intestinal flora balance and improve health. Nevertheless, adverse gastrointestinal (GI) conditions affect the activity of free native probiotics. In this study, a novel probiotic encapsulation system based on milk exosomes (mExos) and DSPE-PEG-PBA was developed.

View Article and Find Full Text PDF

Transcriptional Profiling of Abomasal Mucosa from Young Calves Experimentally Infected with .

Int J Mol Sci

March 2025

Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.

, also known as the brown stomach worm, causes significant pathology in the abomasum, resulting in production and nutritional losses in cattle. Alternative control measures, such as vaccination, are urgently needed because of rapidly growing anthelmintic drug resistance. There is a need to understand host responses to the infection, especially immune responses, to advance vaccine discovery and design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!