Modulated exciton-plasmon interactions in Au-SiO2-CdTe composite nanoparticles.

Opt Express

Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Physics and Microelectronics Science, Hunan University, Changsha 410082, China.

Published: May 2013

Well-defined Au-SiO(2)-CdTe composite nanoparticles were synthesized via a multistep chemical approach in water solution to gain insight into the interaction between metal and semiconductor nanostructures. Photoluminescence measurement reveals that the fluorescence of CdTe quantum dots (QDs) in this composite with optimized SiO(2) thickness (4 nm) has over ten times enhancement compared with that of bare CdTe QDs. The considerable fluorescence enhancement of CdTe QDs is attributed to the surface plasmon resonance, which is further confirmed by the lifetime measurement. The enhanced fluorescence can be used to improve the performance of CdTe QDs as fluorescence probe and may find potential applications in biolabeling.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.011095DOI Listing

Publication Analysis

Top Keywords

cdte qds
12
au-sio2-cdte composite
8
composite nanoparticles
8
modulated exciton-plasmon
4
exciton-plasmon interactions
4
interactions au-sio2-cdte
4
nanoparticles well-defined
4
well-defined au-sio2-cdte
4
nanoparticles synthesized
4
synthesized multistep
4

Similar Publications

DNAzyme-based cascade networks are effective tools to achieve ultrasensitive detection of low-abundance miRNAs. However, their designs are complicated and costly, and the operation is time-consuming. Herein, a novel simple noncascade DNAzyme network is designed and its amplification effect is comparable to or even better than many cascading ones.

View Article and Find Full Text PDF

Although fluorescence analysis methods are widely used in pesticide residue detection, improving their sensitivity and selectivity remains a challenge. This paper presents a novel ratio fluorescence sensor based on the molecular imprinting polymers (MIPs) and metal-enhanced fluorescence for visual detection of dicamba (DIC). Calcium fluoride (CaF) quantum dots (QDs) were immobilized on the surface of Ag@MIPs, resulting in a blue fluorescence response signal (Ag@MIPs-CaF).

View Article and Find Full Text PDF

Low-Toxicity and High-Stability Fluorescence Sensor for the Selective, Rapid, and Visual Detection Tetracycline in Food Samples.

Molecules

December 2024

State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.

With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups.

View Article and Find Full Text PDF

Ciprofloxacin (CIP) is a commonly used antibiotic, but its abuse may cause bacterial resistance, posing a high risk to the environment and human health. Herein, based on the molecular imprinting technology, this study proposed a ratiometric fluorescence sensor employing the "post-doping" strategy, which aims to be rapid, selective, and visually easy-to-use for CIP detection to address antibiotic residues and environmental risks. Specifically, by exploiting the "antenna effect" of lanthanide metal ions (Ln), terbium (III) (Tb) chosen as a fluorescence-assisted functional monomer as well as the red emitting CdTe quantum dots (QDs) as the internal reference signal were introduced into multi-emission Tb-CdTe@SiO@MIPs (TbMIPs).

View Article and Find Full Text PDF

The widespread application of quantum dots (QDs) in recent years has raised concerns about potential environmental and human health risks. Although the toxicity of cadmium telluride quantum dots (CdTe QDs) has been partially studied, their effects on stem cells, tissue regeneration, neurodevelopment, and neurobehavioral toxicity remain unclear. This study aimed to investigate the combined toxic effects and mechanisms of CdTe QDs on planarians at the individual, tissue, cellular, and molecular levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!