Few studies have investigated the use of activated carbon fibers (ACFs) impregnated with noble metals for the catalytic oxidation of volatile organic compounds (VOCs). This study determined the removal efficiency of toluene as a function of time over ACF-supported metal catalysts. Two catalysts (Pt and Pd), five reaction temperatures (120, 150, 200, 250, and 300°C), and three oxygen contents (6%, 10%, and 21%) were investigated to determine the removal of toluene. To study the effects of the characteristics of the catalysts on toluene removal, the composition and morphology of the ACFs were analyzed using the BET, XPS, ICP, and FE-SEM. The results showed that the 0.42%Pd/ACFs showed greater activity for toluene removal than did 2.68%Pt/ACFs at a reaction temperature of 200°C and an oxygen content of 10%. The main removal mechanism of toluene over the 2.68%Pt/ACFs at reaction temperatures less than 200°C was adsorption. The long-term catalytic activity of the 2.68%Pt/ACFs for toluene removal at a reaction temperature of 250°C and an oxygen content of 10% could be obtained. Furthermore, toluene removal over the 2.68%Pt/ACFs at 200°C could be enhanced with increasing oxygen content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2013.04.007 | DOI Listing |
J Environ Manage
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China. Electronic address:
A three-dimensional (3D) electrode system is widely recognized as an effective technology for enhancing electrocatalytic effect. In this study, Cu-Ce modified granular activated carbon (GAC) particle electrodes were prepared using the impregnation method and applied to handle multiphase extraction wastewater. Structural and electrochemical characterization revealed that while the specific surface area of Cu-Ce/GAC decreased by 13.
View Article and Find Full Text PDFAm J Case Rep
December 2024
Division of Emergency Medicine, Toho University Sakura Medical Center, Sakura, Chiba, Japan.
BACKGROUND Toluene poisoning can occur as a result of occupational exposure in industries such as painting, as well as through misuse, leading to complications such as neurological symptoms due to the accumulation of the metabolic byproduct of hippuric acid and metabolic acidosis. However, the exact mechanisms remain unclear. Hippuric acid is not removed by dialysis, so urinary excretion plays a central role.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
CEB - Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal.
Heliyon
December 2024
Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Kipsalas 6a, Riga, Latvia.
Municipal sewage sludge, a by-product of wastewater treatment plants, presents environmental challenges due to its complex composition. Particular concern is the lipophilic and aliphatic compounds that pose risks to the environment and human health. This study focuses on the efficient removal of those compounds from sewage sludge using several organic solvents (hexane, toluene, chloroform, dichloromethane, acetone, hexane-methanol mixture, ethanol, and methanol) and ionic liquids (ILs) like tetrakis(hydroxymethyl)phosphonium chloride and 1-ethyl-3-methylimidazolium acetate by solvent extraction techniques.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
Emissions of volatile organic compounds (VOCs) such as benzene, toluene, xylene, styrene, hexane, tetrachloroethylene, acetone, acetaldehyde, formaldehyde, isopropanol, etc., increase dramatically with accelerated industrialization and economic growth. Most VOCs cause serious environmental pollution and threaten human health due to their toxic and carcinogenic nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!