We recently demonstrated that the latency of a component of the event-related brain potential, the topographical N170 (NT170), is sensitive to the spatial location of reward-related stimuli in a virtual maze environment, occurring earlier for rewards found following rightward turns compared to leftward turns. We suggested that this NT170 latency effect may result from phase reset of an ongoing theta rhythm by a parahippocampal system for spatial navigation. Here we tested several predictions that follow from this proposal, namely, that the effect is observed only when the rewards are presented in a spatial environment, that it is sensitive to individual differences in spatial ability, that it is localizable to the right parahippocampal region, and that it is consistent with partial phase resetting of an ongoing theta rhythm. These results hold promise for integrating ERP measures of spatial navigation with extensive animal, human, and computational literatures on parahippocampal function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsycho.2013.05.004DOI Listing

Publication Analysis

Top Keywords

spatial navigation
12
topographical n170
8
ongoing theta
8
theta rhythm
8
spatial
6
n170 electrophysiological
4
electrophysiological evidence
4
evidence neural
4
neural mechanism
4
mechanism human
4

Similar Publications

Objective: During percutaneous endoscopic interlaminar discectomy (PEID), a range of technologies including medical robotics, visual navigation, and spatial registration have been proposed to expand the application scope and success rate of minimally invasive surgery. The use of robotic technology in surgery is conducive to improving accuracy and reducing risk. This study aims to introduce a precise and efficient targeting method tailored for robot-assisted positioning under C-arm fluoroscopy inPEID.

View Article and Find Full Text PDF

GMmorph: dynamic spatial matching registration model for 3D medical image based on gated Mamba.

Phys Med Biol

January 2025

School of Software Engineering, Xi'an Jiaotong University, Xi 'an Jiaotong University Innovation Port, Xi 'an, Shaanxi Province, Xi'an, Shaanxi, 710049, CHINA.

Deformable registration aims to achieve nonlinear alignment of image space by estimating a dense displacement field. It is commonly used as a preprocessing step in clinical and image analysis applications, such as surgical planning, diagnostic assistance, and surgical navigation. We aim to overcome these challenges: Deep learning-based registration methods often struggle with complex displacements and lack effective interaction between global and local feature information.

View Article and Find Full Text PDF

Dissection of the long-range circuit of the mouse intermediate retrosplenial cortex.

Commun Biol

January 2025

Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, China.

The retrosplenial cortex (RSP) is a complex brain region with multiple interconnected subregions that plays crucial roles in various cognitive functions, including memory, spatial navigation, and emotion. Understanding the afferent and efferent connectivity of the RSP is essential for comprehending the underlying mechanisms of its functions. Here, via viral tracing and fluorescence micro-optical sectioning tomography (fMOST), we systematically investigated the anatomical organisation of the upstream and downstream circuits of glutamatergic and GABAergic neurons in the dorsal and ventral RSP.

View Article and Find Full Text PDF

Hippocampal circuits in the brain enable two distinct cognitive functions: the construction of spatial maps for navigation, and the storage of sequential episodic memories. Although there have been advances in modelling spatial representations in the hippocampus, we lack good models of its role in episodic memory. Here we present a neocortical-entorhinal-hippocampal network model that implements a high-capacity general associative memory, spatial memory and episodic memory.

View Article and Find Full Text PDF

Maze tasks, originally developed in animal research, have become a popular method for studying human cognition, particularly with the advent of virtual reality. However, these experiments frequently rely on simplified environments and tasks, which may not accurately reflect the complexity of real-world situations. Our pilot study aims to transfer a multi-alternative maze with a complex task structure, previously demonstrated to be useful in studying animal cognition, to studying human spatial cognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!