Purpose: Adequate filling of bone defects still poses a challenge in every day clinical work. As many bone defects are irregularly shaped the need for appropriate scaffolds reaching the complete defect surface are great. The purpose of this pre-clinical pilot study was to investigate the handling, biocompatibility, biodegradation and osteoconductivity of a new pasty bone substitute (pure phase β-TCP, hyaluronic acid, methylcellulose) in bone tissue.

Methods: In an unilateral tibial defect model the peri-implant and bone tissue response to the new pasty bone substitute was tested in New Zealand white rabbits for up to 24 weeks compared to empty controls. Analysis included HR-pQCT scans, histomorphometric evaluation and quantification of vascularization of un-decalcified histological slices.

Results: After 1 week the experimental group presented significantly higher new bone volume fraction (p = 0.021) primarily consisting of immature bone matrix and higher vessel density compared to controls (p = 0.013). After 4 weeks bone formation was not significantly different to controls but was distributed more evenly throughout the defect. Bone matrix was now mineralized and trabeculae were thicker than in controls (p = 0.002) indicating faster intramedullary bone maturation. Controls presented extensive periosteal bone formation, major fibrous tissue influx and high vascularization. After 12 and 24 weeks there was no new bone detectable. There were no severe signs of inflammation at all time points.

Conclusion: The substitute showed an early induction of bone formation. It promoted accelerated intramedullary bone repair and maturation and prevented periosteal bone formation indicating its potential use for reconstructive surgery of bone defects.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328213484816DOI Listing

Publication Analysis

Top Keywords

bone formation
20
bone
18
bone substitute
12
bone defects
12
pasty bone
8
bone matrix
8
weeks bone
8
intramedullary bone
8
periosteal bone
8
formation
5

Similar Publications

Comparative evaluation of allograft particulate bone and cortical bone blocks combined with xenograft bone for labial bone defects in the aesthetic zone: a prospective cohort study.

BMC Oral Health

January 2025

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Implant Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Purpose: This study aimed to evaluate the osteogenic performance of allograft particulate bone and cortical bone blocks combined with xenograft under bovine pericardium membranes, for treating different degrees of labial bone defects in the aesthetic zone.

Materials And Methods: Twenty-four patients with bone defects were divided into two groups based on defect severity (Terheyden 1/4 and 2/4 groups). The Terheyden 1/4 group received granular bone grafts alone, while the Terheyden 2/4 group received cortical bone blocks combined with granular bone grafts.

View Article and Find Full Text PDF

Muscle-Guided Mapping of the Post-Traumatic Heterotopic Ossification of the Elbow: A Novel CT-Based Study.

J Shoulder Elbow Surg

January 2025

Department of Orthopedic surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. Electronic address:

Background: Heterotopic ossification (HO) involves abnormal bone formation in soft tissues near joints, commonly occurring after elbow trauma or surgery, leading to pain and functional limitations. Previous studies have primarily characterized HO distribution based on bony landmarks, lacking a detailed investigation into the characteristics of its distribution in periarticular soft tissue in post-traumatic elbows. This study aimed to (1) develop a muscle-guided classification system using computed tomography (CT) to map HO relative to elbow muscle-tendon units and (2) investigate correlations between HO location and severity.

View Article and Find Full Text PDF

In situ bone regeneration and vertical bone augmentation have been huge problems in clinical practice, always imposing a significant economic burden and causing patient suffering. Herein, MgZnYNd magnesium alloy rod implantation in mouse femur resulted in substantial subperiosteal new bone formation, with osteoimmunomodulation playing a pivotal role. Abundant macrophages were attracted to the subperiosteal new bone region and proved to be the most important regulation cells for bone regeneration.

View Article and Find Full Text PDF

Infection rate following mandibular distraction with internal and external devices in infants.

Int J Pediatr Otorhinolaryngol

January 2025

Dr. Elie E. Rebeiz Department of Otolaryngology - Head and Neck Surgery, Tufts Medical Center, Boston, MA, USA. Electronic address:

Background: Internal and external devices may be utilized in mandibular distraction osteogenesis (MDO) for the correction of symptomatic micrognathia in infants and children.

Purpose: To compare the rate and severity of infection between internal and external MDO devices.

Study Design, Setting, Sample: Retrospective cohort study utilizing an institutional database of patients who underwent MDO.

View Article and Find Full Text PDF

Epiregulin ameliorates ovariectomy-induced bone loss through orchestrating the differentiation of osteoblasts and osteoclasts.

J Bone Miner Res

January 2025

NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.

Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!