Rooted phylogeny of the three superkingdoms.

Biochimie

Microbial Ecology, Department of Biology, Lund University, Ecology Building, Sölvegatan 37, Lund, Sweden.

Published: August 2013

The traditional bacterial rooting of the three superkingdoms in sequence-based gene trees is inconsistent with new phylogenetic reconstructions based on genome content of compact protein domains. We find that protein domains at the level of the SCOP superfamily (SF) from sequenced genomes implement with maximum parsimony fully resolved rooted trees. Such genome content trees identify archaea and bacteria (akaryotes) as sister clades that diverge from an akaryote common ancestor, LACA. Several eukaryote sister clades diverge from a eukaryote common ancestor, LECA. LACA and LECA descend in parallel from the most recent universal common ancestor (MRUCA), which is not a bacterium. Rather, MRUCA presents 75% of the unique SFs encoded by extant genomes of the three superkingdoms, each encoding a proteome that partially overlaps all others. This alone implies that the common ancestor to the superkingdoms was very complex. Such ancestral complexity is confirmed by phylogenetic reconstructions. In addition, the divergence of proteomes from the complex ancestor in each superkingdom is both reductive in numbers of unique SFs as well as cumulative in the abundance of surviving SFs. These data suggest that the common ancestor was not the first cell lineage and that modern global phylogeny is the crown of a "recently" re-rooted tree. We suggest that a bottlenecked survivor of an environmental collapse, which preceded the flourishing of the modern crown, seeded the current phylogenetic tree.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2013.04.016DOI Listing

Publication Analysis

Top Keywords

common ancestor
20
three superkingdoms
12
phylogenetic reconstructions
8
genome content
8
protein domains
8
sister clades
8
clades diverge
8
unique sfs
8
ancestor
6
common
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!