A novel neural network approach to cDNA microarray image segmentation.

Comput Methods Programs Biomed

Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom.

Published: July 2013

Microarray technology has become a great source of information for biologists to understand the workings of DNA which is one of the most complex codes in nature. Microarray images typically contain several thousands of small spots, each of which represents a different gene in the experiment. One of the key steps in extracting information from a microarray image is the segmentation whose aim is to identify which pixels within an image represent which gene. This task is greatly complicated by noise within the image and a wide degree of variation in the values of the pixels belonging to a typical spot. In the past there have been many methods proposed for the segmentation of microarray image. In this paper, a new method utilizing a series of artificial neural networks, which are based on multi-layer perceptron (MLP) and Kohonen networks, is proposed. The proposed method is applied to a set of real-world cDNA images. Quantitative comparisons between the proposed method and commercial software GenePix(®) are carried out in terms of the peak signal-to-noise ratio (PSNR). This method is shown to not only deliver results comparable and even superior to existing techniques but also have a faster run time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2013.03.013DOI Listing

Publication Analysis

Top Keywords

microarray image
12
image segmentation
8
segmentation microarray
8
proposed method
8
microarray
5
image
5
novel neural
4
neural network
4
network approach
4
approach cdna
4

Similar Publications

Penile cancer (PeCa) is a rare disease with poor prognosis in the metastatic stage. Neither effective adjuvant nor palliative therapeutic options are available. Research efforts in this field have so far failed to establish robust predictors of survival.

View Article and Find Full Text PDF

Massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).

Nat Commun

January 2025

School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.

Chip scale DNA synthesis offers a high-throughput and cost-effective method for large-scale DNA-based information storage. Nevertheless, unbiased information retrieval from low-copy-number sequences remains a barricade that largely arises from the indispensable DNA amplification. Here, we devise a simulation-guided quantitative primer-template hybridization strategy to realize massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).

View Article and Find Full Text PDF

Immune Biomarkers on Tissue Microarray Cores Support the Presence of Adjacent Tertiary Lymphoid Structures in Soft Tissue Sarcoma.

Lab Invest

January 2025

Interdisciplinary Oncology, University of British Columbia, Vancouver, Canada; Molecular and Advanced Pathology Core, University of British Columbia, Vancouver, Canada; Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada. Electronic address:

Immunotherapy has emerged as a new treatment modality in some soft tissue sarcomas, particularly for tumors associated with tertiary lymphoid structures (TLS). These structures are functional lymphoid aggregates, and their presence is indicative of an active anticancer immune response in the tumor microenvironment. The assessment of TLS as a predictive biomarker at scale on patient specimens remains challenging.

View Article and Find Full Text PDF

Objective: Prenatal diagnosis of fetal 13q34 microdeletion is a rare condition, which may present with abnormal fetal development, including facial dysmorphism, mental retardation, and developmental delay. We present a pregnant woman in whom the fetus presented with a 0.24-cm ventricular septal defect at 20 weeks of gestation, with fetal 13q34 (113610612-115092648) deletion.

View Article and Find Full Text PDF

Objective: This is a case report of a COL4A1 gene mutation which was confirmed by further genetic testing following anomalies observed in prenatal ultrasound and fetal brain magnetic resonance imaging (MRI).

Case Reports: The ultrasound examination of the patient revealed a mass in fetal left intracranial cavity. Repeated subsequent MRI detected an evolving mass in the left frontal parietal lobe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!