AI Article Synopsis

Article Abstract

There is growing interest in using light emitting diodes (LEDs) as alternative to traditional mercury lamps for the removal of micropollutants by advanced oxidation processes due to their low energy consumption and potential for high efficiency and long lifetime. This study investigates the penetration and coverage of the light emitted by LEDs in order to build an optimised LED collimated beam apparatus. From the experimental data, cost analysis was conducted in order to identify when LEDs will become economically viable. It was observed that if their development follows the predictions, LEDs should be a viable alternative to traditional lamps within 7yr for both UV/H2O2 and UV/TiO2 processes. However, parameters such as wall plug efficiency and input power need to improve for LEDs to become competitive.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2013.04.028DOI Listing

Publication Analysis

Top Keywords

emitting diodes
8
removal micropollutants
8
low energy
8
advanced oxidation
8
oxidation processes
8
alternative traditional
8
leds
5
evaluation uv-light
4
uv-light emitting
4
diodes unit
4

Similar Publications

The present study investigates the potential contribution of Photobiomodulation (PBM) to the regeneration of the bone following the extraction of the first mandibular molar in rats. The study evaluates the efficacy of PBM, using both Low-Level Laser Therapy (LLLT) and Light-Emitting Diode Therapy (LEDT), as promotors of osteoblastic activity and the formation of new bone. Study design, setting, and sample: 45 male Wistar rats were divided randomly into three groups of 15 individuals - (i) control group (left lower molar removed only), (ii) the LLL group (molar removed, followed by LLLT), and (iii) the LED group (molar removed, followed by LEDT).

View Article and Find Full Text PDF

Multifunctional applications enabled by tunable multi-emission and ultra-broadband VIS-NIR luminescence energy transfer in Sn/Mn-doped lead-free Zn-based metal halides.

Mater Horiz

January 2025

School of Physical Science and Technology, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

Metal halides are widely applied in solid-state lighting (SSL), optoelectronic devices, information encryption, and near-infrared (NIR) detection due to their superior photoelectric properties and tunable emission. However, single-component phosphors that can be efficiently excited by light-emitting diode (LED) chips and cover both the visible (VIS) and NIR emission regions are still very rare. To address this issue, (TPA)ZnBr:Sn/Mn (TPA = [(CHCHCH)N]) phosphors were synthesized by using the solvent evaporation method.

View Article and Find Full Text PDF

Optimizing photosynthetic lighting is essential for maximizing crop production and minimizing electricity costs in controlled environment agriculture (CEA). Traditional lighting methods often neglect the impact of environmental factors, crop type, and light acclimation on photosynthetic efficiency. To address this, a chlorophyll fluorescence-based biofeedback system was developed to adjust light-emitting diode (LED) intensity based on real-time plant responses, rather than using a fixed photosynthetic photon flux density (PPFD).

View Article and Find Full Text PDF

Iridium(III) Blue Phosphors with Heteroleptic Carbene Cyclometalates: Isomerization, Emission Tuning, and OLED Fabrications.

Angew Chem Int Ed Engl

January 2025

City University of Hong Kong, Materials Sciences and Engineering, 83 Tat Chee Road, Kowloon, 999077, Kowloon Tong, HONG KONG.

Ir(III) complexes are particularly noted for their excellent photophysical properties in giving blue OLED phosphors. In this study, two distinctive carbene pro-chelates LAH2+ and LBH2+ (or LCH2+) were employed in preparation of heteroleptic Ir(III) complexes, to which LAH2+ bears a cyano substituted benzoimidazolium along with N-mesityl appendage, while LBH2+ (or LCH2+) carries the symmetrical benzoimidazolium entity. Notably, the reversible equilibration at high temperature was observed for m, f-ct14 and m, f-ct15 with a single LA chelate.

View Article and Find Full Text PDF

Implanting heteroatoms into organic π-conjugated molecules (OCMS) offered a great opportunity to fine-tune the chemical structures and optoelectronic properties. This work describes a new family of 1,4-azaphosphinines with extended σ-π hyperconjugations. The photophysical studies revealed that azaphosphinines exhibited narrow-band thermally activated delayed fluorescence (TADF) ( full width at half-maximum: 26-40 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!