Background: Definite identification of the cell types and the mechanism relevant to cardiomyogenesis is essential for effective cardiac regenerative medicine. We aimed to identify the cell populations that can generate cardiomyocytes and to clarify whether generation of donor-marker(+) cardiomyocytes requires cell fusion between BM-derived cells and recipient cardiomyocytes.
Methodology/principal Findings: Purified BM stem/progenitor cells from green fluorescence protein (GFP) mice were transplanted into C57BL/6 mice or cyan fluorescence protein (CFP)-transgenic mice. Purified human hematopoietic stem cells (HSCs) from cord blood were transplanted into immune-compromised NOD/SCID/IL2rγ(null) mice. GFP(+) cells in the cardiac tissue were analyzed for the antigenecity of a cardiomyocyte by confocal microscopy following immunofluorescence staining. GFP(+) donor-derived cells, GFP(+)CFP(+) fused cells, and CFP(+) recipient-derived cells were distinguished by linear unmixing analysis. Hearts of xenogeneic recipients were evaluated for the expression of human cardiomyocyte genes by real-time quantitative polymerase chain reaction. In C57BL/6 recipients, Lin(-/low)CD45(+) hematopoietic cells generated greater number of GFP(+) cardiomyocytes than Lin(-/low)CD45(-) mesenchymal cells (37.0+/-23.9 vs 0.00+/-0.00 GFP(+) cardiomyocytes per a recipient, P = 0.0095). The number of transplanted purified HSCs (Lin(-/low)Sca-1(+) or Lin(-)Sca-1(+)c-Kit(+) or CD34(-)Lin(-)Sca-1(+)c-Kit(+)) showed correlation to the number of GFP(+) cardiomyocytes (P<0.05 in each cell fraction), and the incidence of GFP(+) cardiomyocytes per injected cell dose was greatest in CD34(-)Lin(-)Sca-1(+)c-Kit(+) recipients. Of the hematopoietic progenitors, total myeloid progenitors generated greater number of GFP(+) cardiomyocytes than common lymphoid progenitors (12.8+/-10.7 vs 0.67+/-1.00 GFP(+) cardiomyocytes per a recipient, P = 0.0021). In CFP recipients, all GFP(+) cardiomyocytes examined coexpressed CFP. Human troponin C and myosin heavy chain 6 transcripts were detected in the cardiac tissue of some of the xenogeneic recipients.
Conclusions/significance: Our results indicate that HSCs resulted in the generation of cardiomyocytes via myeloid intermediates by fusion-dependent mechanism. The use of myeloid derivatives as donor cells could potentially allow more effective cell-based therapy for cardiac repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647070 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062506 | PLOS |
Tissue Eng Regen Med
January 2025
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China.
Background: The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
Methods: We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
Cardiovasc Drugs Ther
January 2025
State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.
Purpose: To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury.
Methods: A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively.
Sheng Wu Gong Cheng Xue Bao
December 2024
National Center for Protein Sciences (Beijing), Academy of Military Medical Sciences, Beijing 100850, China.
Retinoic acid signaling pathway plays a role in regulating vertebrate development, cell differentiation, and homeostasis. As a key enzyme that catalyzes the oxidation of retinal to retinoic acid, aldehyde dehydrogenase 1 family member A2 (Aldh1a2) is involved in cardiac development, while whether it functions in heart diseases remains to be studied. In this study, we infected primary cardiomyocytes with adenovirus overexpressing (Ad-Aldh1a2) to explore the effects of overexpression on the biological function of cardiomyocytes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
Controlling cellular shape with micropatterning extracellular matrix (ECM) proteins on hydrogels has been shown to improve the reproducibility of the cell structure, enhancing our ability to collect statistics on single-cell behaviors. Patterning methods have advanced efforts in developing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a promising human model for studies of the heart structure, function, and disease. Patterned single hiPSC-CMs have exhibited phenotypes closer to mature, primary CMs across several metrics, including sarcomere alignment and contractility, area and aspect ratio, and force production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!