COMPARATIVE GENE IDENTIFICATION-58 (CGI-58) is a key regulator of lipid metabolism and signaling in mammals, but its underlying mechanisms are unclear. Disruption of CGI-58 in either mammals or plants results in a significant increase in triacylglycerol (TAG), suggesting that CGI-58 activity is evolutionarily conserved. However, plants lack proteins that are important for CGI-58 activity in mammals. Here, we demonstrate that CGI-58 functions by interacting with the PEROXISOMAL ABC-TRANSPORTER1 (PXA1), a protein that transports a variety of substrates into peroxisomes for their subsequent metabolism by β-oxidation, including fatty acids and lipophilic hormone precursors of the jasmonate and auxin biosynthetic pathways. We also show that mutant cgi-58 plants display changes in jasmonate biosynthesis, auxin signaling, and lipid metabolism consistent with reduced PXA1 activity in planta and that, based on the double mutant cgi-58 pxa1, PXA1 is epistatic to CGI-58 in all of these processes. However, CGI-58 was not required for the PXA1-dependent breakdown of TAG in germinated seeds. Collectively, the results reveal that CGI-58 positively regulates many aspects of PXA1 activity in plants and that these two proteins function to coregulate lipid metabolism and signaling, particularly in nonseed vegetative tissues. Similarities and differences of CGI-58 activity in plants versus animals are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3694702PMC
http://dx.doi.org/10.1105/tpc.113.111898DOI Listing

Publication Analysis

Top Keywords

cgi-58
12
lipid metabolism
12
cgi-58 activity
12
coregulate lipid
8
metabolism signaling
8
mutant cgi-58
8
pxa1 activity
8
activity plants
8
pxa1
6
plants
5

Similar Publications

Lipid droplet targeting of ABHD5 and PNPLA3 I148M is required to promote liver steatosis.

bioRxiv

November 2024

Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202.

The storage and release of triacylglycerol (TAG) in lipid droplets (LDs) is regulated by dynamic protein interactions. α/β hydrolase domain-containing protein 5 (ABHD5; also known as CGI-58) is a membrane/LD bound protein that functions as a co-activator of Patatin Like Phospholipase Domain Containing 2 (PNPLA2; also known as Adipose triglyceride lipase, ATGL) the rate-limiting enzyme for TAG hydrolysis. The dysregulation of TAG hydrolysis is involved in various metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD).

View Article and Find Full Text PDF

Lipid droplets (LDs) are transient lipid storage organelles that can be readily tapped to resupply cells with energy or lipid building blocks, and therefore play a central role in cellular metabolism. Double FYVE Domain Containing Protein 1 (DFCP1/ZFYVE1) has emerged as a key regulator of LD metabolism, where the nucleotide-dependent accumulation of DFCP1 on LDs influences their size, number, and dynamics. Here we show that DFCP1 regulates lipid metabolism by directly modulating the activity of Adipose Triglyceride Lipase (ATGL/PNPLA2), the rate-limiting lipase driving the catabolism of LDs.

View Article and Find Full Text PDF

ABHD5 regulates midgut-specific lipid homeostasis in Bombyx mori.

Insect Sci

June 2024

Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China.

Lipids are an important energy source and are utilized as substrates for various physiological processes in insects. Comparative gene identification 58 (CGI-58), also known as α/β hydrolase domain-containing 5 (ABHD5), is a highly conserved and multifunctional gene involved in regulating lipid metabolism and cellular energy balance in many organisms. However, the biological functions of ABHD5 in insects are poorly understood.

View Article and Find Full Text PDF

ATGL is a key enzyme in intracellular lipolysis and plays an important role in metabolic and cardiovascular diseases. ATGL is tightly regulated by a known set of protein-protein interaction partners with activating or inhibiting functions in the control of lipolysis. Here, we use deep mutational protein interaction perturbation scanning and generate comprehensive profiles of single amino acid variants that affect the interactions of ATGL with its regulatory partners: CGI-58, G0S2, PLIN1, PLIN5 and CIDEC.

View Article and Find Full Text PDF

Elevated Kallistatin promotes the occurrence and progression of non-alcoholic fatty liver disease.

Signal Transduct Target Ther

March 2024

Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and the development of non-alcoholic steatohepatitis (NASH) might cause irreversible hepatic damage. Hyperlipidemia (HLP) is the leading risk factor for NAFLD. This study aims to illuminate the causative contributor and potential mechanism of Kallistatin (KAL) mediating HLP to NAFLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!