Introduction: Saccharomyces cerevisiae is an excellent model organism for studies of transcriptional regulation of metabolic processes in other eukaryotic cells including human cells. Cellular acid-base balance can be disturbed in pathologic situations such as renal acidosis or cancer. The extracellular pH of malignant solid tumors is acidic in the range of 6.5-6.9. EG07 and EG37 aci mutants of Saccharomyces cerevisiae excessively excrete carboxylic acids to glucose-containing media or distilled water. The excreted acids are Krebs and/or glyoxylate cycle intermediates. The genes restoring the wild-type phenotype have function that does not easily explain theAci+ phenotype.
Material/methods: In this study, using real-time PCR we measured relative mRNA expression, in the mutants compared to the wild-type strain, of selected genes associated with both carboxylic acid cycles and two cell transporters, Pma1 and Pdr12, of organic acids.
Results: Unexpectedly, we found that the relative expression of the selected Krebs cycle and glyoxylate cycle genes did not change significantly. However, the expression of the two transporter genes was strongly elevated in EG37 and moderately increased in EG07.
Conclusion: These results indicate that the induction of the two cell transporterg enes plays an important role in acid excretion by the aci mutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5604/17322693.1047509 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!