A novel series of 5-arylidene-2,4-thiazolidinediones (TZDs) 2a-p was synthesized from the condensation of 3-((2-phenylthiazol-4-yl)methyl)thiazolidine-2,4-dione with different benzaldehyde derivatives. All the structures were confirmed by their spectral (IR, ¹H NMR, ¹³C NMR and mass) and elemental analytical data. The new molecules were evaluated in vivo as anti-inflammatory agents in an acute experimental inflammation, evaluating the acute phase bone marrow response and phagocyte activity. All compounds, excepting one, reduced the absolute leukocytes count due to the lower neutrophil percentage. Phagocytary index was decreased by the same molecules, while only half of them reduced the phagocytary activity. The effect was superior to meloxicam, the reference anti-inflammatory drug, for the majority of the TZD derivatives. The new molecules were also investigated for their antimicrobial properties on Gram-positive and Gram-negative bacteria and one fungal strain. Two compounds (2e and 2n) manifested growth inhibition capacity on all the tested strains.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ardp.201300021DOI Listing

Publication Analysis

Top Keywords

synthesis n-substituted
4
n-substituted 5-arylidene-24-thiazolidinediones
4
5-arylidene-24-thiazolidinediones anti-inflammatory
4
anti-inflammatory antimicrobial
4
antimicrobial agents
4
agents novel
4
novel series
4
series 5-arylidene-24-thiazolidinediones
4
5-arylidene-24-thiazolidinediones tzds
4
tzds 2a-p
4

Similar Publications

Article Synopsis
  • The rise of multidrug-resistant bacteria highlights the urgent need for new antimicrobial medicines, leading to the investigation of antimicrobial peptoids as potential alternatives.
  • Thirteen peptoid analogues were synthesized with varying alkyl side chains to analyze their antibacterial properties, and only one, called Tosyl-Octyl-Peptoid (TOP), showed significant broad-spectrum bactericidal activity.
  • TOP effectively kills bacteria in both dividing and non-dividing states, demonstrating promising minimum inhibitory concentrations and a high selectivity ratio, suggesting its potential as a future therapeutic option against resistant infections.
View Article and Find Full Text PDF

A novel palladium-catalyzed intramolecular C-H amination via oxidative coupling exploiting inactivated N-substituted aryl amines on indoles for the one-pot synthesis of novel 11-benzo[4,5]imidazo[1,2-]indole derivatives is reported. The optimized reaction conditions accommodated a wide range of electronic variations on both the indole and the pendant aryl amine ring, resulting in products with good to excellent yields.

View Article and Find Full Text PDF

We report the use of unprotected amino acids as submonomer reagents in the solid-phase synthesis of -substituted glycine peptoid oligomers. Subsequent coupling of an amine, alcohol, or thiol to the free carboxylate of the incorporated amino acid provides access to peptoids bearing amides, esters, and thioesters as side chain pendant groups and permits further elongation of the peptoid backbone. The palette of readily obtained building blocks suitable for solid-phase peptoid synthesis is substantially expanded through this protocol, further enhancing the chemical diversity and potential applications of sequence-specific peptoid oligomers.

View Article and Find Full Text PDF

The Synthesis of Sulfonyl Fluoride Functionalized 2-Aminothiazoles Using a Diversity Oriented Clicking Strategy.

Org Lett

December 2024

Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.

We present a Diversity Oriented Clicking approach to synthesize a library of novel clickable -substituted 2-aminothiazoles which serve as versatile hubs for SuFEx click chemistry diversification. Leveraging the spring-loaded reactivity of the 2-Substituted-Alkynyl-1-Sulfonyl Fluoride (SASF) connectors, the transformation is simple to perform, tolerant of a wide range of functionality, and regioselective for a single product. Finally, we propose a detailed stepwise reaction mechanism that is supported by experimental and computational analysis.

View Article and Find Full Text PDF

High ionic conductivity poly(ionic liquid)s (PILs) are of growing interest for their thermal and electrochemical stability, processability, and potential in safe, flexible all-solid-state electrochemical devices. While various approaches to enhance the ionic conductivity are reported, the influence of cation substituents is rarely addressed. Moreover, some of the asymmetric anions recently developed for high-conductivity ionic liquids were never tested in PILs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!