Complex three-dimensional polymer-metal core-shell structures towards emission control.

Phys Chem Chem Phys

Information Countermeasure Department, Aviation University of Air Force, Changchun 130022, People's Republic of China.

Published: June 2013

We report the fabrication of three-dimensional periodic metal nickel nanostructures achieved by the combination of femtosecond laser-induced two-photon polymerization and electroless plating technology. We can control the deposition speed of 10 nm per second by adjusting the reaction time. The thermal stability is good under 500 °C for the three-dimensional graphite-lattice polymer structure with 200 nm nickel film. Optical reflectivity and thermal emission measurements under 550 °C showed that the fabricated metallic structure was thermally excited and emitted light at λ = 4.50, 4.95 μm. The emission peak wavelengths agree with the absorption peaks. These data demonstrate that creating metallic photonic crystals by incorporation of metals to laser-fabricated templates is a simple and cost-efficient method. The emitters can work at such low temperatures, which is more important for realistic operation in applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp44051fDOI Listing

Publication Analysis

Top Keywords

complex three-dimensional
4
three-dimensional polymer-metal
4
polymer-metal core-shell
4
core-shell structures
4
structures emission
4
emission control
4
control report
4
report fabrication
4
fabrication three-dimensional
4
three-dimensional periodic
4

Similar Publications

3D bioprinting: Advancing the future of food production layer by layer.

Food Chem

January 2025

Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea; Department of Applied Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:

3D bioprinting is an advanced manufacturing technique that involves the precise layer-by-layer deposition of biomaterials, such as cells, growth factors, and biomimetic scaffolds, to create three-dimensional living structures. It essentially combines the complexity of biology with the principles of 3D printing, making it possible to fabricate complex biological structures with extreme control and accuracy. This review discusses how 3D bioprinting is developing as an essential step in the creation of alternative food such as cultured meat and seafood.

View Article and Find Full Text PDF

Iliosacral screw osteosynthesis - state of the art.

Arch Orthop Trauma Surg

January 2025

Department of Orthopedics and Traumatology, University Medical Center Mainz, Mainz, Germany.

Iliosacral screw osteosynthesis is a widely recognized technique for stabilizing unstable posterior pelvic ring injuries, offering notable advantages, including enhanced mechanical stability, minimal invasiveness, reduced blood loss, and lower infection rates. However, the procedure presents technical challenges due to the complex anatomy of the sacrum and the proximity of critical neurovascular structures. While conventional fluoroscopy remains the primary method for intraoperative guidance, precise preoperative planning using multiplanar reconstructions and three-dimensional volume rendering is crucial for ensuring accurate placement of iliosacral or transsacral screws.

View Article and Find Full Text PDF

Emerging techniques of additive manufacturing, such as vat-based three-dimensional (3D) bioprinting, offer novel routes to prepare personalized scaffolds of complex geometries. However, there is a need to develop bioinks suitable for clinical translation. This study explored the potential of bacterial-sourced methacrylate levan (LeMA) as a bioink for the digital light processing (DLP) 3D bioprinting of bone tissue scaffolds.

View Article and Find Full Text PDF

Injuries involving the Atlas (C1) and Axis (C2) vertebrae of the cervical spine present significant clinical challenges due to their complex anatomy and potential for severe neurological impairment. Traditional imaging methods often lack the detailed visualization required for precise surgical planning. This study aimed to develop high-resolution 3D models of the C1 and C2 vertebrae to perform a comprehensive morphometric analysis, identify gender differences, and assess bilateral symmetry to enhance surgical accuracy.

View Article and Find Full Text PDF

Three-Dimensional Scanning Virtual Aperture Imaging with Metasurface.

Sensors (Basel)

January 2025

Huawei Technologies Co., Ltd., Chengdu 610000, China.

Metasurface-based imaging is attractive due to its low hardware costs and system complexity. However, most of the current metasurface-based imaging systems require stochastic wavefront modulation, complex computational post-processing, and are restricted to 2D imaging. To overcome these limitations, we propose a scanning virtual aperture imaging system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!