Microstructure-induced helical vortices allow single-stream and long-term inertial focusing.

Lab Chip

Department of Bioengineering, University of California, Los Angeles, California NanoSystems Institute, Los Angeles, CA 90095, USA.

Published: August 2013

Fluid inertia has been used to position microparticles in confined channels because it leads to precise and predictable particle migration across streamlines in a high-throughput manner. To focus particles, typically two inertial effects have been employed: inertial migration of particles in combination with geometry-induced secondary flows. Still, the strong scaling of inertial effects with fluid velocity or channel flow rate have made it challenging to design inertial focusing systems for single-stream focusing using large-scale microchannels. Use of large-scale microchannels (≥100 μm) reduces clogging over long durations and could be suitable for non-single-use flow cells in cytometry systems. Here, we show that microstructure-induced helical vortices yield single-stream focusing of microparticles with continuous and robust operation. Numerical and experimental results demonstrate how structures contribute to improve focusing in these larger channels, through controllable cross-stream particle migration, aided by locally-tuned secondary flows from sequential obstacles that act to bring particles closer to a single focusing equilibrium position. The large-scale inertial focuser developed here can be operated in a high-throughput manner with a maximum throughput of approximately 13,000 particles per s.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3lc41227jDOI Listing

Publication Analysis

Top Keywords

microstructure-induced helical
8
helical vortices
8
inertial focusing
8
particle migration
8
high-throughput manner
8
inertial effects
8
secondary flows
8
single-stream focusing
8
large-scale microchannels
8
inertial
6

Similar Publications

Fluid inertia has been used to position microparticles in confined channels because it leads to precise and predictable particle migration across streamlines in a high-throughput manner. To focus particles, typically two inertial effects have been employed: inertial migration of particles in combination with geometry-induced secondary flows. Still, the strong scaling of inertial effects with fluid velocity or channel flow rate have made it challenging to design inertial focusing systems for single-stream focusing using large-scale microchannels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!