Comprehensive and quantitative information of the thermophile proteome is an important source for understanding of the survival mechanism under high growth temperature. Thermoanaerobacter tengcongensis (T. tengcongensis), a typical anaerobic thermophilic eubacterium, was selected to quantitatively evaluate its protein abundance changes in response to four different temperatures. With optimized procedures of isobaric tags for relative and absolute quantitation quantitative proteomics (iTRAQ), such as peptide fractionation with high-pH reverse phase (RP) high performance liquid chromatography (HPLC), tandem MS acquisition mode in LTQ Orbitrap Velos MS, and evaluation of the quantification algorithms, high quality of the quantitative information of the peptides identified were acquired. In total, 1589 unique proteins were identified and defined 251 as the temperature-dependent proteins. Analysis of genomic locations toward the correspondent genes of these temperature-dependent proteins revealed that more than 30% were contiguous units with relevant biological functions, which are likely to form the operon structures in T. tengcongensis. The RNA sequencing (RNA-seq) data further demonstrated that these cluster genes were cotranscribed, and their mRNA abundance changes responding to temperature exhibited the similar trends as the proteomic results, suggesting that the temperature-dependent proteins are highly associated with the correspondent transcription status. Hence, the operon regulation is likely an energy-efficient mode for T. tengcongensis survival. In addition, evaluation to the functions of differential proteomes indicated that the abundance of the proteins participating in sulfur-respiration on the plasma membrane was decreased as the temperature increased, whereas the glycolysis-related protein abundance was increased. The energy supply in T. tengcongensis at high temperature is, therefore, speculated not mainly through the respiration chain reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734584PMC
http://dx.doi.org/10.1074/mcp.M112.025817DOI Listing

Publication Analysis

Top Keywords

temperature-dependent proteins
16
quantitative proteomics
8
cluster genes
8
thermoanaerobacter tengcongensis
8
protein abundance
8
abundance changes
8
proteins
6
tengcongensis
6
quantitative
4
proteomics reveals
4

Similar Publications

Gases and dissolved black carbon (DBC) formed during pyrolysis of nitrogen-rich feedstock would affect atmospheric and aquatic environments. Yet, the mechanisms driving biomass gas evolution and DBC formation are poorly understood. Using thermogravimetric-Fourier transform infrared spectrometry and two-dimensional correlation spectroscopy, we correlated the temperature-dependent primary noncondensable gas release sequence (HO → CO → HCN, NH → CH → CO) with specific defunctionalization stages in the order: dehydration, decarboxylation, denitrogenation, demethylation, and decarbonylation.

View Article and Find Full Text PDF

The effect of thermal stress on the X-organ/sinus gland proteome of the estuarine blue crab Callinectes sapidus during the intermolt and premolt stages.

J Proteomics

January 2025

Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, USA.

Survival of brachyuran crabs is temperature-dependent and thermal stress promotes changes during molting. We aimed to decipher the impact of thermal stresses on the X-organ/sinus gland (XO/SG) complex, a temperature-sensitive neuroendocrine tissue involved in the molting regulation of Callinectes sapidus during the intermolt and premolt phases. We employed a proteogenomic approach using specimens subjected to control (24 °C), cold (19 °C), and heat (29 °C) temperatures.

View Article and Find Full Text PDF

Temperature-Dependent Cytokine Neutralization Induced by Magnetoelectric Nanoparticles: An In Silico Study.

Int J Mol Sci

December 2024

Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy.

Inflammatory cytokines cooperate to maintain normal immune homeostasis, performing both a protective and a pro-inflammatory action in different body districts. However, their excessive persistence or deregulated expression may degenerate into tissue chronic inflammatory status. Advanced therapies should be designed to deploy selective cytokine neutralizers in the affected tissues.

View Article and Find Full Text PDF

Keratinases are valuable enzymes for converting feather keratin waste into bioactive products but often suffer from poor substrate specificity and low catalytic efficiency. This study reported the creating of a novel keratinase with targeted adherence and specific degradation on feather keratins by fusing prepeptidase C-Terminal (PPC) domain. A PPC domain of metalloprotease E423 specifically adsorbed feather keratins by hydrogen bonds and hydrophobic interactions in a time- and temperature-dependent manner.

View Article and Find Full Text PDF

PqsE and RhlR, key regulators of the Pseudomonas aeruginosa quorum sensing (QS) system, form a hetero-tetrameric complex essential for controlling the expression of virulence factors such as pyocyanin. The interaction between the PqsE homodimer and the RhlR homodimer bound to C4-HSL, enables RhlR to bind low-affinity promoters, thereby influencing gene regulation. Recent studies suggest that RhlR transcriptional activity is modulated by temperature, exhibiting higher activity at environmental temperatures (25 °C) compared to mammalian body temperature (37 °C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!