Pentamethylquercetin (PMQ) has been shown to possess glucose-lowering properties, but its effect on renal fibrosis in diabetes is still unclear. This study was designed to investigate the effect of PMQ on renal fibrosis and the underlying mechanisms in spontaneous type II diabetic Goto-Kakizaki rats and mesangial cells in high glucose. We found that in Goto-Kakizaki rats, PMQ treatment attenuated glomerular volume, glycogen deposition, renal collagen and fibronectin accumulation, in addition to amelioration of diabetic symptoms, including reduction of urine volume and urine glucose levels. In mesangial cells, PMQ remarkably inhibited the cell proliferation and total collagen accumulation, and suppressed cell hypertrophy. Further experiments showed that PMQ treatment down-regulated the expression of TGF-β1, up-regulated Smad7 and inhibited Smad2/3 activation in vivo and vitro. Our results demonstrated that PMQ ameliorated renal fibrosis in diabetes, which may be associated with suppressed TGF-β/Smads signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2013.04.045DOI Listing

Publication Analysis

Top Keywords

mesangial cells
12
renal fibrosis
12
diabetic goto-kakizaki
8
tgf-β/smads signaling
8
fibrosis diabetes
8
goto-kakizaki rats
8
pmq treatment
8
pmq
6
pentamethylquercetin ameliorates
4
fibrosis
4

Similar Publications

(), an edible brown alga, is rich in isophloroglucin A (IPA) phlorotannin compounds and is effective in preventing diseases, including diabetes. We evaluated its anti-glycation ability, intracellular reactive oxygen species scavenging activity, inhibitory effect on the accumulation of intracellular MGO/MGO-derived advanced glycation end products (AGE), and regulation of downstream signaling pathways related to the AGE-receptor for AGEs (RAGE) interaction. IPA (0.

View Article and Find Full Text PDF

Mechanical forces such as glomerular hyperfiltration are crucial in the pathogenesis and progression of diabetic kidney disease. Piezo2 is a mechanosensitive cation channel and plays a major role in various biological and pathophysiological phenomena. We previously reported Piezo2 expression in mouse and rat kidneys and its alteration by dehydration and hypertension.

View Article and Find Full Text PDF

Purpose: This study seeks to investigate the fundamental molecular processes through which histone deacetylase 9 (HDAC9) governs the proliferation of glomerular mesangial cells in the context of immunoglobulin A nephropathy (IgAN) and to identify novel targets for clinical research on IgAN.

Methods: Data from high-throughput RNA sequencing for IgAN were procured from the Gene Expression Omnibus database to assess the expression profiles and clinical diagnostic significance of histone deacetylase family proteins (HDACs). Blood samples from 20 IgAN patients were employed in RT-qPCR analysis, and the spearman linear regression method was utilized to analyze the clinical correlation.

View Article and Find Full Text PDF

Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.

Aim: To explore the impact of MIZ on diabetic nephropathy (DN).

Methods: Diabetic mice were created using db/db mice.

View Article and Find Full Text PDF

The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!