Background & Aims: HIV/HCV co-infection is characterized by a faster progression to liver fibrosis compared to HCV mono-infection. Epidemiologic studies found an association between low CD4(+) T cell counts and advanced stages of liver fibrosis. However, the mechanisms underlying this association remain unclear. CD4(+) T cells critically modulate NK cell activity. Of note, NK cells have been shown to display anti-fibrotic activity via killing of activated hepatic stellate cells (HSC). Thus, we speculated that CD4(+) T cells might modulate fibrosis progression by interacting with NK cells.

Methods: NK cells from HCV(+) (n=35), HIV(+)/HCV(+) (n=28), HIV(+) (n=8) patients, and healthy controls (n=30) were used in this study. NK cells were cultured in the presence or absence of supernatants from CD3/CD28-stimulated CD4(+) cells. Then, NK cells were co-incubated with activated HSC and studied for degranulation, IFN-γ secretion, and induction of HSC apoptosis.

Results: Following incubation with CD4(+) T cell supernatants, NK cells displayed a significantly increased activity against primary HSC as compared to unstimulated NK cells. This effect was, at least in part, mediated via an IL-2 dependent upregulation of NKG2D expression. HCV/HIV co-infection was associated with an impaired IL-2 secretion of CD4(+) T cells resulting in an ineffective stimulation of anti-fibrotic NK cell function.

Conclusions: Here, we show that CD4(+) T cells are able to stimulate anti-fibrotic NK cell activity via IL-2 mediated upregulation of NKG2D. HIV-induced loss of CD4(+) T cells together with an impaired activity of CD4(+) T cells may contribute to accelerate progression of liver fibrosis observed in co-infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2013.04.029DOI Listing

Publication Analysis

Top Keywords

cd4+ cells
28
liver fibrosis
16
cells
14
cd4+
9
anti-fibrotic activity
8
fibrosis progression
8
progression liver
8
cd4+ cell
8
cell activity
8
upregulation nkg2d
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!