Agaricus bisporus is susceptible to a number of diseases, particularly those caused by fungi, with Lecanicillium fungicola being the most serious. Control of this disease is important for the security of crop production, however given the lack of knowledge about fungal-fungal interactions, such disease control is rather limited. Exploiting the recently released genome sequence of A. bisporus, here we report studies simultaneously investigating both the host and the pathogen, focussing on transcriptional changes associated with the cap spotting lesions typically seen in this interaction. Forward-suppressive subtractive hybridisation (SSH) analysis identified 68 A. bisporus unigenes induced during infection. Chitin deacetylase showed the strongest response, with almost 1000-fold up-regulation during infection, so was targeted for down-regulation by silencing to see if it was involved in defence against L. fungicola. Transgenic lines were made expressing hairpin RNAi constructs, however no changes in susceptibility to L. fungicola were observed. Amongst the other up-regulated genes there were none with readily apparent roles in resisting infection in this susceptible interaction. Reverse-SSH identified 72 unigenes from A. bisporus showing reduced expression, including two tyrosinases, several genes involved in nitrogen metabolism and a hydrophobin. The forward-SSH analysis of infected mushrooms also yielded 64 unigenes which were not of A. bisporus origin and thus derived from L. fungicola. An EST analysis of infection-mimicking conditions generated an additional 623 unigenes from L. fungicola including several oxidoreductases, cell wall degrading enzymes, ABC and MFS transporter proteins and various other genes believed to play roles in other pathosystems. Together, this analysis shows how both the pathogen and the host modify their gene expression during an infection-interaction, shedding some light on the disease process, although we note that some 40% of unigenes from both organisms encode hypothetical proteins with no ascribed function which highlights how much there is still to discover about this interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2013.04.010DOI Listing

Publication Analysis

Top Keywords

agaricus bisporus
8
lecanicillium fungicola
8
unigenes bisporus
8
bisporus
6
fungicola
6
unigenes
5
transcriptomic analysis
4
analysis interactions
4
interactions agaricus
4
bisporus lecanicillium
4

Similar Publications

The Application of an Intelligent -Harvesting Device Based on FES-YOLOv5s.

Sensors (Basel)

January 2025

Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Nanjing Institute of Agricultural Mechanization, Nanjing 210014, China.

To address several challenges, including low efficiency, significant damage, and high costs, associated with the manual harvesting of , in this study, a machine vision-based intelligent harvesting device was designed according to its agronomic characteristics and morphological features. This device mainly comprised a frame, camera, truss-type robotic arm, flexible manipulator, and control system. The FES-YOLOv5s deep learning target detection model was used to accurately identify and locate .

View Article and Find Full Text PDF

Spawn aging poses a substantial challenge to the industry. This study focuses on the role of mitochondrial dysfunction in the aging process of spawn. We conducted a comprehensive comparative transcriptome analysis to elucidate the molecular mechanisms underlying spawn aging.

View Article and Find Full Text PDF

Potential Medicinal Fungi from Freshwater Environments as Resources of Bioactive Compounds.

J Fungi (Basel)

January 2025

Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy.

Owing to their nutritional, culinary, and nutraceutical, mushrooms are worldwide consumed and appreciated. Moreover, many of these mushrooms are also known as medicinal mushrooms since they possess several pharmacological properties attributable to a huge number of bioactive compounds derived from their sporophores. Several studies are available in the literature about in vitro and in vivo mechanisms of actions of such bioactive compounds.

View Article and Find Full Text PDF

Blending polysaccharides from three edible mushrooms represents a promising approach for augmenting their anti-oxidant and anti-fatigue activities.

Int J Biol Macromol

January 2025

College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology (Ministry of Agriculture and Rural Affairs), Fuzhou 350002, China. Electronic address:

It has been well documented that a number of polysaccharides with potent free-radical scavenging capability possess notable anti-fatigue activity. Interestingly, recent evidence also suggested mixed polysaccharides derived from multiple sources may yield augmented bioactivities compared to the polysaccharides from a single source. Therefore, in the current study, we investigated the anti-oxidant and anti-fatigue activities of a blend of polysaccharides isolated from three mushrooms.

View Article and Find Full Text PDF

An agar medium-based method for screening somatic incompatibility in Agaricus bisporus.

Fungal Biol

February 2025

Wageningen Plant Breeding Research, Mushroom Research Group, the Netherlands. Electronic address:

To visualize the nonself recognition reaction in the cultivated mushroom Agaricus bisporus, we developed a method using the azo dye Evans blue. The use of Evans blue highlights dead mycelial sections, which are produced following nonself recognition in the interaction zone between two individuals. This method can differentiate between distinct heterokaryons, as well as between closely related heterokaryons constructed from siblings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!