Hereditary spherocytosis and elliptocytosis are the two most common inherited red cell membrane disorders resulting from mutations in genes encoding various red cell membrane and skeletal proteins. Red cell membrane, a composite structure composed of lipid bilayer linked to spectrin-based membrane skeleton is responsible for the unique features of flexibility and mechanical stability of the cell. Defects in various proteins involved in linking the lipid bilayer to membrane skeleton result in loss in membrane cohesion leading to surface area loss and hereditary spherocytosis while defects in proteins involved in lateral interactions of the spectrin-based skeleton lead to decreased mechanical stability, membrane fragmentation and hereditary elliptocytosis. The disease severity is primarily dependent on the extent of membrane surface area loss. Both these diseases can be readily diagnosed by various laboratory approaches that include red blood cell cytology, flow cytometry, ektacytometry, electrophoresis of the red cell membrane proteins, and mutational analysis of gene encoding red cell membrane proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.blre.2013.04.003 | DOI Listing |
Mol Biol Evol
January 2025
Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
A key trait of Eukarya is the independent evolution of complex multicellular (CM) in animals, plants, fungi, brown algae and red algae. This phenotype is characterized by the initial exaptation of cell-cell adhesion genes followed by the emergence of mechanisms for cell-cell communication, together with the expansion of transcription factor gene families responsible for cell and tissue identity. The number of cell types (NCT) is commonly used as a quantitative proxy for biological complexity in comparative genomics studies.
View Article and Find Full Text PDFThe severity of COVID 19 symptoms has a direct correlation with lymphopenia, affecting natural killer (NK) cells. SARS-CoV-2 specific "memory" NK cells obtained from convalescent donors can be used as cell immunotherapy. In 2022 a phase I, dose-escalation, single center clinical trial was conducted to evaluate the safety and feasibility of the infusion of CD3/CD56 NK cells against moderate/severe cases of COVID-19 (NCT04578210).
View Article and Find Full Text PDFJOR Spine
March 2025
SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases) Santiago University Clinical Hospital Santiago de Compostela Spain.
Background: Intervertebral disc degeneration (IVDD) is one of the main causes of chronic low back pain. The degenerative process is often initiated by an imbalance between catabolic and anabolic pathways. Despite the large socio-economic impact, the initiation and progress of disc degeneration are poorly understood.
View Article and Find Full Text PDFMol Ther Oncol
March 2025
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
Oncolytic adenoviral therapy is a promising approach for pancreatic cancer treatment. However, the limited capacity of murine cells to produce infectious viral progeny precludes the full evaluation of the virotherapy in a suitable immunocompetent mouse model. Here, we report that the murine KPC-I cell line, established from pancreatic tumors developed in ; ; mice, is susceptible to adenoviral replication and generates a progeny of infective virions similar to those from infected human A549 cells.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil.
Obesity is associated with several comorbidities that cause high mortality rates worldwide. Thus, the study of adipose tissue (AT) has become a target of high interest because of its crucial contribution to many metabolic diseases and metabolizing potential. However, many AT-related physiological, pathophysiological, and toxicological mechanisms in humans are still poorly understood, mainly due to the use of non-human animal models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!