The geometry of carotid artery bifurcation is of high clinical interest because it determines the characteristics of blood flow that is closely related to the formation and development of atherosclerotic plaque. However, information on the dynamic changes in the vessel wall of carotid artery bifurcation during a pulsatile cycle is limited. This pilot study investigated the cyclic changes in carotid artery geometry caused by blood flow pulsation in rats. A high-resolution ultrasound imaging system with a broadband scanhead centered at 40 MHz was used to obtain longitudinal images of the rat carotid artery. A high frame rate retrospective B-scan imaging technique based on the use of electrocardiogram to trigger signal acquisition was used to examine precisely the fast arterial wall motion. Two-dimensional geometry data obtained from nine rats showed that the rat carotid artery asymmetrically contracts and dilates during each cardiac cycle. Systolic/diastolic vessel diameters near the upstream and downstream regions from the bifurcation were 0.976 ± 0.011/0.825 ± 0.015 mm and 0.766 ± 0.015/0.650 ± 0.016 mm, respectively. Their posterior/anterior wall displacement ratios in the radial direction were 41.0 ± 14.9% and 2.9 ± 1.6%, respectively. These results indicate that in the vicinity of bifurcation, the carotid artery favorably expands to the anterior side during the systolic phase. This phenomenon was observed to be more prominent in the downstream region near the bifurcation. The cyclic variation pattern in wall movement varies depending on the measurement site, which shows different patterns at far upstream and downstream of the bifurcation. The asymmetric radial expansion and contraction of the rat carotid artery observed in this study may be useful in studying the hemodynamic etiology of cardiovascular diseases because the pulsatile changes in vessel geometry may affect the local hemodynamics that determines the spatial distribution of wall shear stress, one of important cardiovascular risk factors. Further systematic study is needed to clarify the effects of wall elasticity, branch angle and vessel diameter ratio on the asymmetric wall motion of carotid artery bifurcation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2013.04.012DOI Listing

Publication Analysis

Top Keywords

carotid artery
36
rat carotid
16
artery bifurcation
12
carotid
9
artery
9
asymmetric radial
8
radial expansion
8
expansion contraction
8
contraction rat
8
artery observed
8

Similar Publications

Objectives: Artificial intelligence (AI) software including Brainomix "e-CTA" which detect large vessel occlusions (LVO) have clinical potential. We hypothesised that in real world use where prevalence is low, its clinical utility may be overstated.

Methods: In this single centre retrospective service evaluation project, data sent to Brainomix from a medium size acute National Health Service (NHS) Trust hospital between 1/3/2022-1/3/2023 was reviewed.

View Article and Find Full Text PDF

The present study aims to examine the effect of 4 h of continuous sitting on cerebral endothelial function, which is a crucial component of cerebral blood flow regulation. We hypothesized that 4 h of sitting may impair cerebral endothelial function similarly to how it affects lower limb vasculature. Thirteen young, healthy participants were instructed to remain seated for 4 h without moving their lower limbs.

View Article and Find Full Text PDF

A 69-year-old man with chest pain was diagnosed with acute type B aortic dissection with the entry tear located at distal arch and a distal aortic arch aneurysm. Therefore, we performed debranching thoracic endovascular aortic repair 2 weeks after type B aortic dissection onset. First, the graft was anastomosed to bilateral axillary arteries.

View Article and Find Full Text PDF

Fibromuscular dysplasia (FMD) is a non-atherosclerotic, non-inflammatory vascular disease of medium-sized arteries that causes abnormal cellular growth in arterial walls and most commonly affects young to middle-aged women (20-50 years of age). While FMD often involves the renal arteries, it can affect any arterial bed. FMD has a characteristic angiographic appearance of a "string of beads.

View Article and Find Full Text PDF

Objective: To explore the anatomical and clinical factors that affect the radiographic exposure time in radial artery cerebral angiography and to establish a model.

Method: A total of 210 patients who underwent radial artery cerebral angiography at this center from September 2021 to May 2022 were selected, and their anatomical and clinical factors were analyzed to evaluate the correlation between these factors and the duration of radiographic exposure. A related neural network prediction model was established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!