The paper shows some tools (its interpretation and usefulness) to optimize a derivatization reaction and to more easily interpret and visualize the effect that some experimental factors exert on several analytical responses of interest when these responses are in conflict. The entire proposed procedure has been applied in the optimization of equilibrium/extraction temperature and extraction time in the acetylation reaction of 2,4,6-trichlorophenol; 2,3,4,6-tetrachlorophenol, pentachlorophenol and 2,4,6-tribromophenol as internal standard (IS) in presence of 2,4,6-trichloroanisole, 2,3,5,6-tetrachloroanisole, pentachloroanisole and 2,4,6-trichloroanisole-d5 as IS. The procedure relies on the second order advantage of PARAFAC (parallel factor analysis) that allows the unequivocal identification and quantification, mandatory according international regulations (in this paper the EU document SANCO/12495/2011), of the acetyl-chlorophenols and chloroanisoles that are determined by means of a HS-SPME-GC/MS automated device. The joint use of a PARAFAC decomposition and a Doehlert design provides the data to fit a response surface for each analyte. With the fitted surfaces, the overall desirability function and the Pareto-optimal front are used to describe the relation between the conditions of the derivatization reaction and the quantity extracted of each analyte. The visualization by using a parallel coordinates plot allows a deeper knowledge about the problem at hand as well as the wise selection of the conditions of the experimental factors for achieving specific goals about the responses. In the optimal experimental conditions (45°C and 25min) the determination by means of an automated HS-SPME-GC/MS system is carried out. By using the regression line fitted between calculated and true concentrations, it has been checked that the procedure has neither proportional nor constant bias. The decision limits, CCa, for probability a of false positive set to 0.05, vary between 0.221 and 0.420µgL(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2013.04.038DOI Listing

Publication Analysis

Top Keywords

derivatization reaction
12
experimental factors
8
experimental
4
experimental design
4
design optimization
4
optimization derivatization
4
reaction
4
reaction determining
4
determining chlorophenols
4
chlorophenols chloroanisoles
4

Similar Publications

A Straightforward Synthetic Route to Monocyclic 1,3,2,4-Diazadiborinines.

Inorg Chem

December 2024

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.

A novel straightforward synthetic route to monocyclic 1,3,2,4-diazadiborinines has been developed by the sequential reaction of the NHC-coordinated iminoborane with bases and haloboranes (or borate). The first examples of monocyclic 1,3,2,4-diazadiborinines featuring different functional groups on the two B atoms have been synthesized and structurally characterized. Further derivatization of 4-bromophenyl-substituted 1,3,2,4-diazadiborinine has also been achieved, giving the biphenyl-substituted 1,3,2,4-diazadiborinine.

View Article and Find Full Text PDF

Four new macrolides, spirosnuolides A-D (-, respectively), were discovered from the termite nest-derived sp. INHA29. Spirosnuolides A-D are 18-membered macrolides sharing an embedded [6,6]-spiroketal functionality inside the macrocycle and are conjugated with structurally uncommon side chains featuring cyclopentenone, 1,4-benzoquinone, hydroxyfuroic acid, or butenolide moieties.

View Article and Find Full Text PDF

Hyaluronan (HA; [-3-GlcNAc-1-beta-4-GlcA-1-beta] ), an essential matrix polysaccharide of vertebrates and the molecular camouflage coating in certain pathogens, is polymerized by "HA synthase" (HAS) enzymes. Three HAS classes have been identified with biotechnological utility, but only the Class II PmHAS from Type A has been useful for preparation of very defined HA polymers in vitro. Two general chemoenzymatic strategies with different size products are possible: (1) repetitive step-wise extension reactions by sequential addition of a single monosaccharide from a donor UDP-sugar onto an acceptor (or "primer") comprised of a short glycosaminoglycan chain (e.

View Article and Find Full Text PDF

Macrocyclic Compounds with Diverse Skeletons from the Roots of and Their Spasmolytic Activity.

J Nat Prod

December 2024

Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, People's Republic of China.

Six undescribed macrocyclic compounds, including diarylhexanoids ( and ), a diarylhexanoid glucoside (), diarylheptanoids ( and ), and an aceroside (), were isolated from the roots of Cheval., along with 11 known analogues (-). The structures were elucidated by spectroscopic analysis, as well as by calculated optical rotatory dispersion and derivatization reactions.

View Article and Find Full Text PDF

Phytate in plants (inositol phosphates, InsPs) affects mineral bioavailability. However, methods for their quantification may lead to variable results, and some are nonspecific (spectrophotometric techniques). In this study, ion-pair high-performance liquid chromatography (HPLC) was coupled with post-column derivatization to allow fluorescence detection (FLD, λ324/λ364 nm) of InsPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!