AI Article Synopsis

  • The study used a cation-selective gramicidin A channel to investigate how the oligoarginine peptide R9C interacts with lipid membranes, finding that its adsorption is strongest with negatively charged lipids.
  • R9C does not form pores in the membrane but can cause leakage in negatively charged liposomes through a lipid mixing mechanism.
  • The results indicate that for cationic cell-penetrating peptides like R9C, crossing the membrane's uncharged outer layer is improbable, requiring both anionic lipids and fusion between membranes for permeabilization.

Article Abstract

Using a cation-selective gramicidin A channel as a sensor of the membrane surface charge, we studied interactions of oligoarginine peptide R9C, a prototype cationic cell-penetrating peptide (CPP), with planar lipid membranes. We have found that R9C sorption to the membrane depends strongly on its lipid composition from virtually nonexistent for membranes made of uncharged lipids to very pronounced for membranes containing negatively charged lipids, with charge overcompensation at R9C concentrations exceeding 1 μM. The sorption was reversible as it was removed by addition of polyanionic dextran sulfate to the membrane bathing solution. No membrane poration activity of R9C (as would be manifested by increased bilayer conductance) was detected in the charged or neutral membranes, including those with asymmetric negative/neutral and negative/positive lipid leaflets. We conclude that interaction of R9C with planar lipid bilayers does not involve pore formation in all studied lipid combinations up to 20 μM peptide concentration. However, R9C induces leakage of negatively charged but not neutral liposomes in a process that involves lipid mixing between liposomes. Our findings suggest that direct traversing of CPPs through the uncharged outer leaflet of the plasma membrane bilayer is unlikely and that permeabilization necessarily involves both anionic lipids and CPP-dependent fusion between opposing membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647162PMC
http://dx.doi.org/10.1016/j.bpj.2013.02.053DOI Listing

Publication Analysis

Top Keywords

planar lipid
12
negatively charged
12
cationic cell-penetrating
8
cell-penetrating peptide
8
lipid bilayers
8
charged lipids
8
charged neutral
8
lipid
7
r9c
6
membrane
5

Similar Publications

Vangl is a planar cell polarity (PCP) core protein essential for aligned cell orientation along the epithelial plane perpendicular to the apical-basal direction, which is important for tissue morphogenesis, development and collective cell behavior. Mutations in Vangl are associated with developmental defects, including neural tube defects (NTDs), according to human cohort studies of sporadic and familial cases. The complex mechanisms underlying Vangl-mediated PCP signaling or Vangl-associated human congenital diseases have been hampered by the lack of molecular characterizations of Vangl.

View Article and Find Full Text PDF

Kingella kingae, an emerging pediatric pathogen, secretes the pore-forming toxin RtxA, which has been implicated in the development of various invasive infections. RtxA is synthesized as a protoxin (proRtxA), which gains its biological activity by fatty acylation of two lysine residues (K558 and K689) by the acyltransferase RtxC. The low acylation level of RtxA at K558 (2-23 %) suggests that the complete acylation at K689 is crucial for toxin activity.

View Article and Find Full Text PDF

Effect of Triterpenoids Betulin and Betulinic Acid on Pulmonary Surfactant Membranes.

J Membr Biol

December 2024

Faculty of Science, Department of Physics, Ege University, 35100, Bornova, Izmir, Turkey.

Article Synopsis
  • - The study investigates how triterpenoids betulin (BE) and betulinic acid (BA) influence the behavior and packing of pulmonary surfactant membranes, particularly focusing on their effects on dipalmitoylphosphatidylcholine (DPPC) bilayers using various scientific methods.
  • - Findings indicate that BE has a more significant impact on DPPC than BA; BE at 20 mol% causes changes in phase transitions, while BA at lower concentrations decreases the main transition temperature and disrupts the pretransition entirely.
  • - Both triterpenoids enhance lateral mobility and dehydration in DPPC structures, leading to larger liposomes and changed molecular interactions, demonstrated by hydrogen bonding between the triterpenoids and
View Article and Find Full Text PDF

The planar lipid bilayer (PLB) technique represents a highly effective method for the study of membrane protein properties in a controlled environment. The PLB method was employed to investigate the role of mitochondrial inner membrane protein 17 (MPV17), whose mutations are associated with a hepatocerebral form of mitochondrial DNA depletion syndrome (MDS). This protocol presents a comprehensive, step-by-step guide to the assembly and utilization of a PLB system.

View Article and Find Full Text PDF

Integrated genome and metabolome mining unveiled structure and biosynthesis of novel lipopeptides from a deep-sea Rhodococcus.

Microb Biotechnol

November 2024

Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Giardini del Molosiglio, Naples, Italy.

Microbial biosurfactants have garnered significant interest from industry due to their lower toxicity, biodegradability, activity at lower concentrations and higher resistance compared to synthetic surfactants. The deep-sea Rhodococcus sp. I2R has been identified as a producer of glycolipid biosurfactants, specifically succinoyl trehalolipids, which exhibit antiviral activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!