For the first time, the analytical application of integrate ionophore-transducer material based on magnetic graphene hybrids and 2,2-dithiodipyridine (DTDP) in solid-contact lanthanum (III) selective electrode is reported. The attachment of Fe3O4 nanoparticles (NPs) to graphene oxide (GO) for magnetic graphene hybrid is achieved by covalent bonding, and the universal problem, Fe3O4 NPs may easily leach out from the graphene during application, is successfully solved by the method above. The proposed electrode exhibits an excellent near-Nernstian response to lanthanum (III) ranging from 1.0×10(-9) to 1.0×10(-3)M with a slope of 17.81 mV/dec. Moreover, the excellent performance on fairly good selectivity, wide applicable pH range (3.0(_)8.0), fast response time (10s) and long life time (2 months) reveal the superiority of the electrode. Most importantly, we have made a great improvement in the detection limit (2.75×10(-10)M), which brings new dawn to the real-time detection of lanthanum (III) using ion selective electrode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2013.04.001 | DOI Listing |
Acta Crystallogr E Crystallogr Commun
January 2025
Département de Chimie Faculté des Sciences et Techniques Université Cheik Anta Diop Dakar Senegal.
In the binuclear title complex, [La(CHO)(CHN)(HO)](NO)·0.5HO, the two lanthanum ions are nine coordinate in a distorted trigonal-prismatic geometry. Each La ion is bonded to three N atoms of the Schiff base, 1-(pyridin-2-yl)-2-(pyridin-2-yl-methyl-ene)hydrazine and is coordinated by one acetate group, which acts in -bidentate mode and two acetate groups that act in -mode between the two La ions.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:
Rare earth elements (REEs) are extensively utilized in industry, agriculture, advanced materials and other fields, leading to their dispersion in water bodies as emerging contaminants. Meanwhile, the coexistence of REEs and heavy metals (HMs) has become a novel form of water contamination (REE-HM co-contamination), though scientists have limited understanding of its hazards. Here, Chlorococcum sp.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, Leipzig 04103, Germany.
Two octa-coordinated lanthanum (III) complexes of deprotonated azaphosphor β-diketon and diimine ligands, [LnLQ] (L = [ClCHC(O)NP(O)(NCH)], Q = Phen (C1) and Bipy (C2)), were synthesized and characterized by elemental analysis, IR, and NMR spectra. X-ray crystallography revealed a distorted tetragonal antiprism LaO6N2 coordination geometry around the lanthanum atom in both compounds. Nano-sized complexes (Ć1 and Ć2) were synthesized via a sonochemical process and analyzed using SEM and XRPD.
View Article and Find Full Text PDFInorg Chem
December 2024
Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.
A series of seven-coordinated monoporphyrinate rare-earth(III) complexes featuring a novel tripodal tin-chelated trisphosphineoxide scorpionate ligand with the general formula [(TPP)Ln(PPhO)Sn] (Ln = Y, La, Dy, Er, Ho, Yb; TPP = 5,10,15,20-tetraphenylporphyrinate) were synthesized by reactions of the potassium tripodal scorpionate ligand [Sn(PPhO)K] with porphyrinate rare-earth metal chlorides [(TPP)LnCl(dme)] (Ln = Y, Dy, Er, Ho, Yb) or porphyrinate lanthanum borohydride [(TPP)LaBH(thf)]. The complexes were characterized by single-crystal X-ray diffraction, NMR spectroscopy, and ion mobility mass spectrometry. All complexes emit weak red TPP-based fluorescence, accompanied by near-infrared emission of Er, Ho (rather weak), and Yb (relatively intense with a quantum yield of 1% in dichloromethane solution) of the corresponding complexes.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Faculty of Materials Science and Ceramics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
Lanthanum oxide (LaO) layers are widely used in electronics, optics, and optoelectronics due to their properties. Lanthanum oxide is also used as a dopant, modifying and improving the properties of other materials in the form of layers, as well as having a large volume. In this work, lanthanum oxide layers were obtained using MOCVD (Metalorganic Chemical Vapor Deposition) on the inner walls of tubular substrates at 600-750 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!