Si microwire solar cells: improved efficiency with a conformal SiO2 layer.

ACS Nano

School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

Published: June 2013

AI Article Synopsis

  • Silicon microwire arrays are emerging as efficient and cost-effective solar cells, with the study reporting conversion efficiencies as high as 10.6% for 1 cm² devices.
  • Key performance metrics include an open-circuit voltage of 0.56 V, a short-circuit current density of 25.2 mA/cm², and a fill factor of 75.2%, utilizing a thin 25 μm silicon absorption layer.
  • The efficiency improvement from 8.71% to 10.6% is achieved by adding a 200 nm thick SiO2 coating, which significantly reduces reflection in the visible spectrum.

Article Abstract

Silicon microwire arrays have attracted considerable attention recently due to the opportunity they present as highly efficient and cost-effective solar cells. In this study, we report on efficient Si microwire array solar cells with areas of 1 cm(2) and Air Mass 1.5 Global conversion efficiencies of up to 10.6%. These solar cells show an open-circuit voltage of 0.56 V, a short-circuit current density of 25.2 mA/cm(2), and a fill factor of 75.2%, with a silicon absorption region that is only 25 μm thick. In particular, the maximum overall efficiency of the champion device is improved from 8.71% to 10.6% by conformally coating the wires with a 200 nm thick SiO2 layer. Optical measurements reveal that the layer reduces reflection significantly over the entire visible range.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn401776xDOI Listing

Publication Analysis

Top Keywords

solar cells
16
sio2 layer
8
microwire solar
4
cells
4
cells improved
4
improved efficiency
4
efficiency conformal
4
conformal sio2
4
layer silicon
4
silicon microwire
4

Similar Publications

The ground-state charge generation (GSCG) in photoactive layers determines whether the photogenerated carriers occupy the deep trap energy levels, which, in turn, affects the device performance of organic solar cells (OSCs). In this work, charge-quadrupole electrostatic interactions are modulated to achieve GSCG through a molecular strategy of introducing different numbers of F atom substitutions on the BTA3 side chain. The results show that 8F substitution (BTA3-8F) and 16F substitution (BTA3-16F) lead to different patterns of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level changes.

View Article and Find Full Text PDF

The conductivity of AgNWs electrodes can be enhanced by incorporating Ag grids, thereby facilitating the development of large-area flexible organic solar cells (FOSCs). Ag grids from vacuum evaporation offer the advantages of simple film formation, adjustable thickness, and unique structure. However, the complex 3D multi-component structure of AgNWs electrodes will exacerbate the aggregation of large Ag particles, causing the device short circuits.

View Article and Find Full Text PDF

Most current highly efficient organic solar cells utilize small molecules like Y6 and its derivatives as electron acceptors in the photoactive layer. In this work, a small molecule acceptor, SC8-IT4F, is developed through outer side chain engineering on the terminal thiophene of a conjugated 6,12-dihydro-dithienoindeno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IDTT) central core. Compared to the reference molecule C8-IT4F, which lacks outer side chains, SC8-IT4F displays notable differences in molecule geometry (as shown by simulations), thermal behavior, single-crystal packing, and film morphology.

View Article and Find Full Text PDF

Stress Relaxation for Lead Iodide Nucleation in Efficient Perovskite Solar Cells.

Adv Mater

January 2025

Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

Porous lead iodide (PbI) film is crucial for the complete reaction between PbI and ammonium salts in sequential-deposition technology so as to achieve high crystallinity perovskite film. Herein, it is found that the tensile stress in tin (IV) oxide (SnO) electron transport layer (ETL) is a key factor influencing the morphology and crystallization of PbI films. Focusing on this, lithium trifluoromethanesulfonate (LiOTf) is used as an interfacial modifier in the SnO/PbI interface to decrease the tensile stress to reduce the necessary critical Gibbs free energy for PbI nuclei formation.

View Article and Find Full Text PDF

High defect concentrations at the interfaces are the basis of charge extraction losses and instability in perovskite solar cells. Surface engineering with organic cations is a common practice to solve this issue. However, the full implications of the counteranions of these cations for device functioning are often neglected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!