Development of a real-time PCR to detect Streptococcus equi subspecies equi.

Equine Vet J

Technology Transfer Unit, Specialist Scientific Support Department, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, UK.

Published: January 2014

Reasons For Performing Study: Infection with Streptococcus equi subspecies equi (S. equi) is endemic in the UK. A proportion of horses serve as long-term carriers and act as a reservoir of infection. Detection of these persistently infected horses is difficult using standard culture techniques owing to a lack of sensitivity and overgrowth by contaminating bacteria. In addition, differentiation of this causative bacterium from the closely related S. equi zooepidemicus has made the development of reliable and accurate diagnostic tests difficult.

Objective: To develop and validate a sensitive and specific real-time PCR assay to detect S. equi and to compare the results with traditional culture techniques.

Study Design: Retrospective cross-sectional study.

Methods: The assay was validated using a panel of 92 samples from suspected clinical cases of strangles. These were cultured using microbial techniques and tested using the S. equi real-time PCR. The results of the 2 methods were compared, and the diagnostic sensitivity and specificity of the real-time PCR were calculated. The real-time PCR was tested for cross-reactivity with horse commensal bacteria, and the efficiencies and limits of detection were established.

Results: The assay had a diagnostic sensitivity of 95% and specificity of 86%. No cross-reactivity was observed with any of the bacterial species tested, including S. equi zooepidemicus. The assay detected as few as 3 gene copies.

Conclusion: The assay is fast, sensitive and specific and will detect S. equi DNA directly from a crude extract of clinical material on a swab.

Potential Relevance: This assay could aid in the rapid detection of subclinical shedders of S. equi, enabling quicker treatment and helping to limit the spread of strangles in equine populations.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evj.12088DOI Listing

Publication Analysis

Top Keywords

real-time pcr
20
equi
10
streptococcus equi
8
equi subspecies
8
subspecies equi
8
equi zooepidemicus
8
sensitive specific
8
diagnostic sensitivity
8
assay
6
pcr
5

Similar Publications

Alopecia areata (AA) is an autoimmune condition marked by hair loss, linked to inflammatory processes involving the interleukin-1 receptor type 1 (IL-1R1) pathway. This study aims to explore the relationship between IL-1R1 gene expression, serum IL-1R1 levels, and hsa-miR-19b-3p in relation to AA severity. Using a case-control design, we assessed 100 AA patients and 100 healthy controls, measuring serum IL-1R1 through enzyme-linked immunosorbent assay (ELISA) and analyzing IL-1R1 gene and hsa-miR-19b-3p expression levels via quantitative real-time PCR (qRT-PCR).

View Article and Find Full Text PDF

Purpose: We aimed to explore the mechanism by which Boron-doped nano-hydroxyapatite (B-nHAp) facilitates the proliferation and differentiation of osteoblasts through controlled release of B.

Methods: B-nHAp characterization was accomplished by means of X-ray diffraction, scanning electron microscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. Human bone marrow mesenchymal stem cells (hBMSCs) were subjected to flow cytometry, alizarin red S staining, and cell counting kit-8 assay for proliferation and differentiation determination.

View Article and Find Full Text PDF

Detection of Francisellaceae and the differentiation of main European F. tularensis ssp. holarctica strains (Clades) by new designed qPCR assays.

BMC Microbiol

January 2025

Cellular Interactions of Bacterial Pathogens, Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms (ZBS 2), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.

Background: The zoonotic and highly infectious pathogen Francisella tularensis is the etiological agent of tularemia. Tularemia in humans is mainly caused by F. tularensis subspecies tularensis and holarctica, but Francisella species like F.

View Article and Find Full Text PDF

Dental pulp regeneration is significantly aided by human dental pulp stem cells (hDPSCs). An increasing number of studies have demonstrated that circular RNAs (circRNAs) are crucial in the multidirectional differentiation of many mesenchymal stem cells, but their specific functions and mechanisms remain unknown. This work aimed at elucidating the molecular mechanism by which hsa_circ_0001599 works in hDPSCs during odontogenic differentiation.

View Article and Find Full Text PDF

Yak milk inhibits osteoclast differentiation by suppressing TRPV5 expression.

J Dairy Sci

January 2025

Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830046, China.

Yak milk is a potential nutrient for improving osteoporosis. However, the effect of yak milk on the expression of Caion channel TRPV5 during osteoclast (OC) differentiation is still unclear. This study used ruthenium red as a control to investigate the effect of yak milk on osteoclast differentiation and activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!