Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Effects of natural organic matter (NOM) on the photoreaction kinetics of fullerenes (i.e., C60 and fullerenol) were investigated using simulated sunlight and monochromatic radiation (365 nm). NOM from several sources quenched (slowed) the photoreaction of C60 aggregates in water (aqu/nC60), but sensitized (accelerated) photoreaction of fullerenol. Kinetic studies indicated that the quenching occurred through a static mechanism involving NOM molecules adsorbed on the aqu/nC60 surface. Quenching constants for the photoreaction of aqu/nC60 correlated approximately with optical parameters related to the aromaticity and molecular size of the NOM. Association of aqu/nC60 particles with NOM was investigated indirectly via the study of the aggregation kinetics of colloidal C60 in the presence and absence of NOM as a function of NaCl strength at pH 7. In contrast to aqu/nC60, the photoreaction efficiencies of the hydrophilic fullerene, fullerenol, increased linearly with increasing NOM concentrations and kinetic parameters for the sensitized photoreactions increased as the spectral slope coefficients and ratio of absorption coefficients at 254 to 365 nm (E2:E3) of the NOM increased. The results indicate that triplet excited states of the NOM are key intermediates in the photosensitized reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es304985w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!