Developments in stem cells: implications for future joint replacements.

Proc Inst Mech Eng H

Department of Orthopaedics, Southern General Hospital, 1345 Govan Road, Glasgow G514TF, UK.

Published: March 2013

Will stem cell research reverse the projected sevenfold increase in primary and revision knee replacements expected in the United States between 2005 and 2030? A focus on prevention and treatment of osteoarthritis may end the need for primary joint replacements. A more likely scenario can be described as slow and incremental changes in the prevention and treatment of osteoarthritis, accompanied by the continuing development of implant technology. Since the discovery of stem cells in the 1950s, research has increased exponentially. Expanded autologous chondrocytes, and more recently ex vivo expanded skeletal stem cells, are currently injected into osteochondral defects in the hope of regenerating cartilage and halting progression towards osteoarthritis. In addition, mesenchymal stem cells are being injected into human joints as a treatment for osteoarthritis despite a lack of quantitative research. Concurrently, stem cell research continues to contribute to chemical and topographical advancements in implant design. Advances in co-culture techniques mean it is possible that biologic articular replacements will develop prior to the cessation of the need for arthroplasty and radically change the nature of joint replacements. Whether it is through implant design or a potential cure for the pain attributable to osteoarthritis, as we hope to show in this 'forward look article', it is our opinion that stem cells will certainly impact future joint replacement.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0954411912471492DOI Listing

Publication Analysis

Top Keywords

stem cells
20
joint replacements
12
treatment osteoarthritis
12
future joint
8
replacements will
8
stem cell
8
prevention treatment
8
implant design
8
stem
6
cells
5

Similar Publications

Breast cancer remains the leading cause of mortality among women with cancer. This article delves into the intricate relationship between breast cancer and cancer stem cells (CSCs), emphasizing advanced methods for their identification and isolation. The key isolation techniques, such as the mammosphere formation assay, surface marker identification, Side Population assay, and Aldehyde Dehydrogenase assay, are critically examined.

View Article and Find Full Text PDF

MiRNAs: main players of cancer drug resistance target ABC transporters.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.

Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters.

View Article and Find Full Text PDF

De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).

View Article and Find Full Text PDF

CD9/SOX2-positive cells in the intermediate lobe of the rat pituitary gland exhibit mesenchymal stem cell characteristics.

Cell Tissue Res

January 2025

Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.

Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells.

View Article and Find Full Text PDF

Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity.

Curr Obes Rep

January 2025

Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.

Purpose Of Review: Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles.

Recent Findings: Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!