Background: Arylnaphthalene lignan Justicidin B is a lead compound in the management of bone cancer and osteoclastogenesis. The compound is the main cytotoxic principle of rare medicinal plant Linum narbonense L. (Linaceae). However, there have been no reports on the bioreactor production of justicidin B.
Objective: to develop cost-effective biotechnology for production of this anticancer metabolite.
Materials And Methods: The genetic transformation in hairy roots induced by Agrobacterium rhizogenes strain ATCC 15834, was proven by PCR analysis. The control of bioreactor was synthesized by gradient method. The optimal values of the controlling parameters were estimated with presence of technological limitation. The general structure of control system was based on "Hardware in the Loop" (HIL).
Results: Hairy roots produced five-fold higher yields of justicidin B (7.78mg/g DW) compared to callus. A rapidly growing root line was selected for cultivation in 2-L stirred tank bioreactor. After optimization, maximum biomass of 22.5 g.l(-1) dry wt was harvested from the bioreactor culture vessel (recording about 8 times increase over initial inoculum), with 1.42 % ± 0.12 Justicidine B, greater than contents from flasks were obtained. The extracts were tested in a panel of human tumor cell lines, using the MTT-dye reduction assay, exert inhibitory effects against malignant cells.
Conclusion: Our findings are the first work on large cultivation of L. narbonense hairy roots and bioreactor production of plant anticancer agent Justicidin B. To extend the research to human clinical studies, we have found a reliable biotechnological supply of plant material, produced this target compound.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3647392 | PMC |
http://dx.doi.org/10.4103/0973-1296.108138 | DOI Listing |
J Plant Physiol
January 2025
Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China. Electronic address:
Physalis peruviana L. (P. peruviana) is an edible medicinal plant rich in bioactive phenolics.
View Article and Find Full Text PDFNew Phytol
January 2025
Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada, Kobe, Hyogo, 657-8501, Japan.
Steroidal glycoalkaloids (SGAs) are specialized metabolites primarily produced by Solanaceae plants such as potatoes and tomatoes. Notably, α-solanine and α-chaconine are recognized as toxic substances in potatoes. While the biosynthetic pathways of SGAs are largely understood, the final steps of α-solanine and α-chaconine biosynthesis remained elusive.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
Carnosol (CO) and carnosic acid (CA) are pharmaceutically important diterpenes predominantly produced in members of Lamiaceae, Salvia officinalis (garden sage), Salvia fruticosa and Rosmarinus officinalis. Nevertheless, availability of these compounds in plant system is very low. In an effort to improve the in planta content of these diterpenes in garden sage, SmERF6 (Salvia miltiorrhiza Ethylene Responsive Factor 6) transcription factor was expressed heterologously.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Botany, Jiangsu Province, Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Nanjing 210014, China. Electronic address:
WRKY transcription factors (TFs) play pivotal roles in regulating plant nutrient uptake, particularly phosphate (Pi) acquisition, and biosynthesis of secondary metabolites. Euphorbia lathyris, a significant medicinal plant with diverse pharmacological activities, lacks a systematic analysis of WRKY members and their functional roles. In this study, 58 ElWRKY genes were identified in the E.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland.
Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!