Monolithic stationary phases based on octadecyl acrylate for CEC using different initiating systems (UV irradiation, thermal, and chemical initiation) in the presence of lauroyl peroxide as initiator were synthesized. For each initiation mode, the influence of the porogenic solvent composition on both the morphological and electrochromatographic properties of the resulting monoliths was investigated. Under optimal conditions, excellent efficiencies for the photochemically and chemically polymerized monoliths (minimum plate heights of 6.9-10.7 and 6.5-12.6 μm, respectively) were achieved. Thermally initiated columns gave lower efficiency values, permeabilities, and longer analysis times compared to these initiating systems. The produced monolithic stationary phases were evaluated in terms of reproducibility and gave RSD values below 9.2, 10.6, and 9.8% for UV, thermally, and chemically initiated columns, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.201300288DOI Listing

Publication Analysis

Top Keywords

octadecyl acrylate
8
thermal chemical
8
chemical initiation
8
monolithic stationary
8
stationary phases
8
initiating systems
8
initiated columns
8
preparation characterization
4
characterization octadecyl
4
acrylate monoliths
4

Similar Publications

Precise Preparation of Size-Uniform Two-Dimensional Platelet Micelles Through Crystallization-Assisted Rapid Microphase Separation Using All-Bottlebrush-Type Block Copolymers with Crystalline Side Chains.

J Am Chem Soc

January 2025

Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.

Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates.

View Article and Find Full Text PDF

Silk Fibroin-Based Multiple-Shape-Memory Organohydrogels.

ACS Appl Mater Interfaces

October 2024

Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey.

Organohydrogels (OHGs) are intriguing materials due to their unique composition of both hydrophilic and hydrophobic domains. This antagonistic nature endows the OHGs with several remarkable properties, making them highly versatile for various applications. We present here a simple and inexpensive approach to fabricate silk fibroin (SF)-based OHGs with multistage switching mechanics and viscoelasticity.

View Article and Find Full Text PDF

This study introduces the synthesis and detailed characterization of a novel thermochromic material capable of reversible alterations in its thermotropic transmittance. Through an emulsion polymerization process, this newly developed material is composed of 75-85% octadecyl acrylate and 0-7% allyl methacrylate, demonstrating a pronounced discoloration effect across a narrow yet critical temperature range of 24.5-39 °C.

View Article and Find Full Text PDF

Smart-Adhesive, Breathable and Waterproof Fibrous Electronic Skins.

Adv Sci (Weinh)

September 2024

Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong.

For the need of direct contact with the skin, electronic skins (E-skins) should not only fulfill electric functions, but also ensure comfort during wearing, including permeability, waterproofness, and easy removal. Herein, the study has developed a self-adhesive, detach-on-demand, breathable, and waterproof E-skin (PDSC) for motion sensing and wearable comfort by electrospinning styrene-isoprene block copolymer rubber with carbon black nanosheets as the sensing layer and liner copolymers of N, N-dimethylacrylamide, n-octadecyl acrylate and lauryl methacrylate as the adhesive layer. The high elasticity and microfiber network structure endow the PDSC with good sensitivity and high linearity for strain sensing.

View Article and Find Full Text PDF

One-step of ionic liquid-assisted stabilization and dispersion: Exfoliated graphene and its applications in stimuli-responsive conductive hydrogels based on chitosan.

Int J Biol Macromol

June 2024

School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.

Conductive hydrogels, as novel flexible biosensors, have demonstrated significant potential in areas such as soft robotics, electronic devices, and wearable technology. Graphene is a promising conductive material, but its dispersibility in aqueous solutions exists difficulties. Here, we discover that untreated graphene, after exfoliation by different ionic liquids, can disperse well in aqueous solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!